The generation and distribution of entanglement are key resources in quantum repeater schemes. Temporally multiplexed systems offer time-bin encoding of quantum information which provides robustness against decoherence in fibers, crucial in long distance communication. Here, we demonstrate the direct generation of entanglement in time between a photon and a collective spin excitation in a rare earth ion doped ensemble. We analyze the entanglement by mapping the atomic excitation onto a photonic qubit and by using time-bin qubit analyzers implemented with another doped crystal using the atomic frequency comb technique. Our results provide a solid-state source of entangled photons with embedded quantum memory. Moreover, the quality of the entanglement is high enough to enable a violation of a Bell inequality by more than two standard deviations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.030501DOI Listing

Publication Analysis

Top Keywords

quantum memory
8
time entanglement
4
entanglement photon
4
photon spin
4
spin wave
4
wave multimode
4
multimode solid-state
4
quantum
4
solid-state quantum
4
memory generation
4

Similar Publications

Dissipation Alters Modes of Information Encoding in Small Quantum Reservoirs near Criticality.

Entropy (Basel)

January 2025

Chula Intelligent and Complex Systems Lab, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

Quantum reservoir computing (QRC) has emerged as a promising paradigm for harnessing near-term quantum devices to tackle temporal machine learning tasks. Yet, identifying the mechanisms that underlie enhanced performance remains challenging, particularly in many-body open systems where nonlinear interactions and dissipation intertwine in complex ways. Here, we investigate a minimal model of a driven-dissipative quantum reservoir described by two coupled Kerr-nonlinear oscillators, an experimentally realizable platform that features controllable coupling, intrinsic nonlinearity, and tunable photon loss.

View Article and Find Full Text PDF

Microneedle patch-involved local therapy synergized with immune checkpoint inhibitor for pre- and post-operative cancer treatment.

J Control Release

January 2025

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:

The metastasis and recurrence of cancer post-surgery remain the major reasons for treatment failures. Herein, a photo-immune nanoparticle decorating with M1 macrophage membrane (BD@LM) is designed based on the inflammatory environment after surgical resection. By loading photosensitizer black phosphorus quantum dots (BPQDs) and chemotherapeutics doxorubicin (DOX) in BD@LM nanoparticles, an effective chemophototherapy-mediated immunogenic cell death of tumor cells is triggered, subsequently leading to the maturation of dendritic cells for further immune cascade.

View Article and Find Full Text PDF

Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.

View Article and Find Full Text PDF

Theoretical Study on the Kinetics of Secondary Oxygen Addition Reactions for N-Butyl Radicals.

J Phys Chem A

January 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Chemical kinetics for second oxygen addition reactions (·QOOH + O) of long-chain alkanes are of great importance in low-temperature combustion technologies. However, kinetic data for key reactions of ·QOOH + O systems are often difficult to obtain experimentally and are primarily estimated or calculated by using theoretical methods. In this work, barrier heights (BHs), reaction energies (Δs), and relative energies (REs) of stationary points for key reactions of two representative ·QOOH + O systems in the low-temperature oxidation of -butyl as well as pressure-dependent rate constants for the involved reactions are calculated with the high-level quantum chemical method CCSD(T)-F12b/CBS.

View Article and Find Full Text PDF

Synergistic Control of Ferroelectric and Optical Properties in Molecular Ferroelectric for Multiplexing Nonvolatile Memory.

Adv Mater

January 2025

Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China.

Utilizing the correlation among diverse physical properties to facilitate multiplexing and multistate memory is anticipated to emerge as an efficient strategy to enhance memory capacity, achieve device miniaturization, and ensure information security. As an important functional material, ferroelectrics have long been considered as a potential candidate in multistate memory devices. Furthermore, the integration of optical response offers an alternative path to realizing multiplexing features, further enhancing the versatility and efficiency of these devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!