2,6-Dichlorobenzamide (BAM) is a major groundwater micropollutant posing problems for drinking water treatment plants (DWTPs) that depend on groundwater intake. sp. MSH1 uses BAM as the sole source of carbon, nitrogen, and energy and is considered a prime biocatalyst for groundwater bioremediation in DWTPs. Its use in bioremediation requires knowledge of its BAM-catabolic pathway, which is currently restricted to the amidase BbdA converting BAM into 2,6-dichlorobenzoic acid (2,6-DCBA) and the monooxygenase BbdD transforming 2,6-DCBA into 2,6-dichloro-3-hydroxybenzoic acid. Here, we show that the 2,6-DCBA catabolic pathway is unique and differs substantially from catabolism of other chlorobenzoates. BbdD catalyzes a second hydroxylation, forming 2,6-dichloro-3,5-dihydroxybenzoic acid. Subsequently, glutathione-dependent dehalogenases (BbdI and BbdE) catalyze the thiolytic removal of the first chlorine. The remaining chlorine is then removed hydrolytically by a dehalogenase of the α/β hydrolase superfamily (BbdC). BbdC is the first enzyme in that superfamily associated with dehalogenation of chlorinated aromatics and appears to represent a new subtype within the α/β hydrolase dehalogenases. The activity of BbdC yields a unique trihydroxylated aromatic intermediate for ring cleavage that is performed by an extradiol dioxygenase (BbdF) producing 2,4,6-trioxoheptanedioic acid, which is likely converted to Krebs cycle intermediates by BbdG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b02021 | DOI Listing |
Water Res
November 2024
Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea. Electronic address:
Advanced suspect and non-target screening (SNTS) approach can identify a large number of potential hazardous micropollutants in groundwater, underscoring the need for pinpointing priority pollutants among detected chemicals. This present study therefore demonstrates a novel multi-criteria decision making (MCDM) framework utilizing machine learning (ML) algorithms coupled with toxicological prioritization index tool (i.e.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany; Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany. Electronic address:
Contamination of water resources with mixtures of organic micropollutants (OMP) including pesticides, pharmaceuticals, and industrial chemicals is a serious threat to aquatic organisms and human health. Long-term exposure to such pollutants may cause detrimental effects even at very low concentrations. Water resources in urban agglomerations in low- and medium-income countries may be under particular pressure due to high population densities, significant industrial activities, and limited water treatment and management resources.
View Article and Find Full Text PDFWater Res
November 2024
Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, Leipzig 04318, Germany; Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, Leipzig 04103, Germany. Electronic address:
Persistent and mobile (PM) chemicals are considered detrimental for drinking water resources as they may pass through all barriers protecting these resources against pollution. However, knowledge on the occurrence of PM chemicals in the water cycle, that make their way into drinking water resources, is still limited. The effluents of six municipal wastewater treatment plants (WWTPs, n = 38), surface water of two rivers (n = 32) and bank filtrate of one site (n = 15) were analyzed for 127 suspected PM chemicals.
View Article and Find Full Text PDFSci Total Environ
October 2024
TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13, 1040 Wien, Austria.
In recent decades, extensive monitoring programmes have been conducted at the national, international, and project levels with the objective of expanding our understanding of the contamination of surface waters with micropollutants, which are often referred to as hazardous substances (HS). It has been demonstrated that HS enter surface waters via a number of pathways, including groundwater, atmospheric deposition, soil erosion, and urban systems. Given the ever-growing list of substances and the high resource demand associated with laboratory analysis, it is common practice to quantify the listed pathways based on emission factors derived from temporally and spatially constrained monitoring programmes.
View Article and Find Full Text PDFEnviron Toxicol Chem
July 2024
Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!