AI Article Synopsis

  • Molecular diagnostics plays a key role in caring for neuro-oncological patients by evaluating genetic and epigenetic factors.
  • Various assays are used to detect different genetic alterations, from single gene tests to advanced techniques that can identify multiple abnormalities in one process.
  • The review outlines the types of these molecular tests, highlighting their benefits and limitations in diagnosing central nervous system tumors.

Article Abstract

Molecular diagnostics currently has a crucial role in neuro-oncological patient care. (Epi)genetic assays testing for point mutations, copy number variations, gene fusions, translocations, and methylation status are of main diagnostic interest in neuro-oncology. Multiple assays have been developed for this purpose, ranging from single gene tests to high-throughput, integrated techniques enabling detection of multiple genetic aberrations in a single workflow. This review describes the nature of the simpler and more complex assays for molecular diagnostics of tumors of the central nervous system and briefly discusses their strengths and weaknesses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656323PMC
http://dx.doi.org/10.1093/nop/npy041DOI Listing

Publication Analysis

Top Keywords

central nervous
8
nervous system
8
molecular diagnostics
8
molecular tools
4
tools pathologic
4
pathologic diagnosis
4
diagnosis central
4
system tumors
4
tumors molecular
4
diagnostics currently
4

Similar Publications

Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.

View Article and Find Full Text PDF

NET formation-mediated in situ protein delivery to the inflamed central nervous system.

Nat Commun

December 2024

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.

Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.

View Article and Find Full Text PDF

A Drosophila Model of Mucopolysaccharidosis IIIB.

Genetics

December 2024

Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.

Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole genome gene expression and their causal relationships to neural degeneration remain unknown.

View Article and Find Full Text PDF

Neurological diseases are central nervous system (CNS) disorders affecting the whole body. Early diagnosis of the diseases is difficult due to the lack of disease-specific tests. Adding new biomarkers external to the CNS facilitates the diagnosis of neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!