() is a medicinal plant that has been traditionally used for a number of pathological disorders. In current study, its various fractions were assessed for radical scavenging, phenolic, flavonoid content and enzyme inhibition. The methanolic extract (MSC) of was subjected to fractionation using different solvents including -hexane, benzene, chloroform, ethyl acetate and -butanol. Results revealed that ethyl acetate fraction showed maximum phenolic (101.81 ± 0.13 mg GAE/g) and flavonoid (96.80 ± 0.39 mg QE/g) content with maximum radical scavenging potential (82.51 ± 0.18%, IC=104.45 µg/ml) as well as urease (82.63 ± 0.79%), tyrosinase (81.30 ± 0.41%) and Butyrylcholinesterase (BChE) (62.47 ± 0.76%) inhibition at 0.5 mg/ml. Whereas, maximum -Glucosidase (87.56 ± 0.13%) and Acetylcholinesterase (AChE) inhibition (82.34 ± 0.64%) was exhibited by -hexane and benzene fractions, respectively. Present study has revealed the promising radical scavenging, phenolic, flavonoid and enzyme inhibitory potential of various fractions of extract. Thus, the study is a step forward towards evidence-based phyto-medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2019.1648463DOI Listing

Publication Analysis

Top Keywords

radical scavenging
16
phenolic flavonoid
12
flavonoid content
8
inhibitory potential
8
scavenging phenolic
8
-hexane benzene
8
ethyl acetate
8
phenolic
4
radical
4
content radical
4

Similar Publications

Amphibian-Derived Peptides as Natural Inhibitors of SARS-CoV-2 Main Protease (Mpro): A Combined In Vitro and In Silico Approach.

Chem Biodivers

January 2025

Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.

View Article and Find Full Text PDF

Introduction: Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.

View Article and Find Full Text PDF

Recently, there has been a growing demand for plant-based products to treat a range of health conditions. (L.), a member of the Lamiaceae family, is widely known for its versatile therapeutic properties.

View Article and Find Full Text PDF

Recently, the extensive use of antibiotics has unavoidably resulted in the discharge of significant quantities of these drugs into the environment, causing contamination and fostering antibiotic resistance. Among various approaches employed to tackle this problem, heterogeneous photocatalysis has emerged as a technique for antibiotic degradation. This study explores the potential of CeO as a photocatalyst for the degradation of chloramphenicol.

View Article and Find Full Text PDF

Zirconium dioxide nanoparticles (ZrO NPs) have gained significant attention due to their excellent bioavailability, low toxicity, and diverse applications in the medical and industrial fields. In this study, ZrO NPs were synthesized using zirconyl oxychloride and the aqueous leaf extract of as a stabilizing agent. Analytical techniques, including various spectroscopy methods and electron microscopy, confirmed the formation of aggregated spherical ZrO NPs, ranging from 15 to 30 nm in size, with mixed-phase structure composed of tetragonal and monoclinic structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!