The activation and modulation of the magnetism of MoS nanosheets are critical to the development of their application in next-generation spintronics. Here, we report a synergetic strategy to induce and modulate the ferromagnetism of the originally nonmagnetic MoS nanosheets. A two-step experimental method was used to simultaneously introduce substitutional V dopants and sulfur vacancy (V) in the MoS nanosheet host, showing an air-stable and adjustable ferromagnetic response at room temperature. The ferromagnetism could be modulated by varying the content of V through Ar plasma irradiation of different periods, with a maximum saturation magnetization of 0.011 emu g reached at the irradiation time of 6 s (s). Experimental characterizations and first-principles calculations suggest that the adjustable magnetization is attributed to the synergetic effect of the substitutional V dopants and V in modulating the band structure of MoS nanosheets, resulting from the strong hybridization between the V 3d state and the V-induced impurity bands. This work suggests that the synergetic effect of substitutional V atoms and V is a promising route for tuning the magnetic interactions in two-dimensional nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b09165 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
The design and preparation of advanced hybrid nanofibers with controllable microstructures will be interesting because of their potential high-efficiency applications in the environmental and energy domains. In this paper, a simple and efficient strategy was developed for preparing hybrid nanofibers of zinc oxide-molybdenum disulfide (ZnO-MoS) grown on polyimide (PI) nanofibers by combining electrospinning, a high-pressure hydrothermal process, and in situ growth. Unlike simple composite nanoparticles, the structure is shown in PI-ZnO to be like the skeleton of a tree for the growth of MoS "leaves" as macro-materials with controlled microstructures.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!