Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate a propagating-path uniformly scanned light sheet excitation (PULSE) microscopy based on the oscillation of voice coil motor that can rapidly drive a thin light sheet along its propagation direction. By synchronizing the rolling shutter of a camera with the motion of laser sheet, we can obtain a uniform plane-illuminated image far beyond the confocal range of Gaussian beam. A stable 1.7-μm optical sectioning under a 3.3 mm × 3.3 mm wide field of view (FOV) has been achieved for up to 20 Hz volumetric imaging of large biological specimens. PULSE method transforms the extent of plane illumination from one intrinsically limited by the short confocal range (μm scale) to one defined by the motor oscillation range (mm scale). Compared to the conventional Gaussian light sheet imaging, our method greatly mitigates the compromise of axial resolution and successfully extends the FOV over 100 times. We demonstrate the applications of PULSE method by rapidly imaging cleared mouse spinal cord and live zebrafish larva at isotropic subcellular resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983483 | PMC |
http://dx.doi.org/10.1117/1.JBO.24.8.086501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!