In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdr2.1564 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFPLoS One
January 2025
Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.
View Article and Find Full Text PDFJ Proteome Res
January 2025
University of Santo Amaro (UNISA), Rua Isabel Schmidt 349, São Paulo 04743-030, Brazil.
Background: Peri-implantitis is characterized as a pathological change in the tissues around dental implants. Fourier-transform infrared spectroscopy (FTIR) provides molecular information from optical phenomena observed by the vibration of molecules, which is used in biological studies to characterize changes and serves as a form of diagnosis.
Aims: this case-control study evaluated the peri-implant disease by using FTIR spectroscopy with attenuated total reflectance in the fingerprint region.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!