Organic micropollutants in rivers are emitted via diffuse and point sources like from agricultural practice or wastewater treatment plants (WWTP). Extensive laboratory and field experiments have been conducted to understand emissions and fate of these pollutants in freshwaters. Nevertheless, data is often difficult to compare since common protocols for appropriate approaches are largely missing. Thus, interpretation of the observed changes in substance concentrations and of the underlying fate of these compounds downstream of the chemical input into the river is still challenging. To narrow this research gap, (1) process understanding and (2) measurement approaches for field-based investigations are critically reviewed in this article. The review includes, on the one hand, processes that change the volume of the water (hydrological processes) and, on the other hand, processes that affect the substance mass within the water (distribution and transformation). Environmental boundary conditions for the purpose of better comparability of different attenuation studies, as well as promising state-of-the-art measurement approaches from different disciplines, are presented. This overview helps to develop a tailored procedure to assess turnover mechanisms of organic micropollutants under field conditions. In this respect, further research needs to standardize interdisciplinary approaches to increase the informative value of collected data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06058-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!