Some toxic metals (Al, As, Mo, Hg) from cow's milk raised in a possibly contaminated area by different sources.

Environ Sci Pollut Res Int

Medicine, Surgery and Anatomy Veterinary Department, Veterinary Faculty, University of León, Campus de Vegazana, 24071, León, Spain.

Published: October 2019

Milk can be considered as an indicator of the degree of environmental contamination of the place where it is produced and this is especially important when assessing its content in toxic metals. Therefore, 36 bovine milk samples from 7 farms with a semi-extensive grazing system were analysed, located in Asturias (Spain), in an area with high probability of being highly contaminated due to a mining zone, with important industrial activity and near high-density highway traffic. The samples were lyophilised to achieve total dehydration, further analysed using inductively coupled plasma mass spectrometry (ICP-MS). The metals titrated were aluminium (Al), arsenic (As), molybdenum (Mo) and mercury (Hg) in the lyophilised samples and subsequently extrapolated their values to whole milk. All samples analysed showed levels of Al and Mo above the limit of detection, with mean values of Al of 140.89 ± 157.07 in liquid milk and 1065.76 ± 1073.45 in lyophilised milk and Mo of 20.72 ± 14.61 μg/kg and 152.26 ± 96.82 μg/kg in whole and lyophilised milk. Only As was detected in four samples with mean values of 18.45 ± 6.89 and 166.45 ± 42.30 μg/kg in liquid and lyophilised milk, respectively, and no Hg was found in any of them. In no case do the values found indicate a significant hazard to the population and are in agreement with those found in other investigations. Although the various anthropogenic activities of the area (industrial, mining, traffic density) could, a priori, indicate a possibly contaminated area.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-06036-7DOI Listing

Publication Analysis

Top Keywords

lyophilised milk
12
toxic metals
8
milk
8
contaminated area
8
milk samples
8
samples
5
lyophilised
5
metals cow's
4
cow's milk
4
milk raised
4

Similar Publications

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

The current trend in food innovations includes developing products containing plant ingredients or extracts rich in bioactive compounds. This study aimed to prepare and characterize skimmed thermally treated goat's milk powders enriched with lyophilized fruit extracts of Murray (GMLR) and L. (GMLB).

View Article and Find Full Text PDF

Electrostatic Spray Drying of a Milk Protein Matrix-Impact on Maillard Reactions.

Molecules

December 2024

Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland.

Electrostatic spray drying (ESD) of a milk protein matrix comprising whey protein isolate (WPI), skim milk powder (SMP), and lactose was compared to conventional spray drying (CSD) and freeze-drying (FD). ESD and CSD were used to produce powders at low (0.12-0.

View Article and Find Full Text PDF

This study investigated the survival dynamics of BG24, a probiotic strain, within reconstituted skim milk (RSM) and yeast extract (YE) matrices during the spray-drying (SD) process, encompassing of inlet/outlet air temperatures. Notably, optimum SD parameters were found to be an inlet air temperature of 150°C and outlet air temperature of 83°C, that achieving high viability (92.23%), and reducing both moisture content (MC) (3.

View Article and Find Full Text PDF

The enhancement of cellulose degradation is important for improving the quality of corn-stalk silage. However, the rapid drop in pH caused by the propagation of lactic acid bacteria (LAB) can influence the degradation of cellulose by cellulose-degrading microorganisms (CDMs) during the mixed fermentation process of ensilage. In this study, a CDM ( 2-4, BM 2-4) was isolated, and its lyophilization condition was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!