Relaxin family peptide 1 (RXFP1) is the receptor for relaxin a peptide hormone with important therapeutic potential. Like many G protein-coupled receptors (GPCRs), RXFP1 has been reported to form homodimers. Given the complex activation mechanism of RXFP1 by relaxin, we wondered whether homodimerization may be explicitly required for receptor activation, and therefore sought to determine if there is any relaxin-dependent change in RXFP1 proximity at the cell surface. Bioluminescence resonance energy transfer (BRET) between recombinantly tagged receptors is often used in GPCR proximity studies. RXFP1 targets poorly to the cell surface when overexpressed in cell lines, with the majority of the receptor proteins sequestered within the cell. Thus, any relaxin-induced changes in RXFP1 proximity at the cell surface may be obscured by BRET signal originating from intracellular compartments. We therefore, utilized the newly developed split luciferase system called HiBiT to specifically label the extracellular terminus of cell surface RXFP1 receptors in combination with mCitrine-tagged receptors, using the GABA heterodimer as a positive control. This demonstrated that the BRET signal detected from RXFP1-RXFP1 proximity at the cell surface does not appear to be due to stable physical interactions. The fact that there is also no relaxin-mediated change in RXFP1-RXFP1 proximity at the cell surface further supports these conclusions. This work provides a basis by which cell surface GPCR proximity and expression levels can be specifically studied using a facile and homogeneous labeling technique such as HiBiT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667744 | PMC |
http://dx.doi.org/10.1002/prp2.513 | DOI Listing |
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Front Biosci (Landmark Ed)
December 2024
Department of Pathology, The First Affiliated Hospital of Soochow University, 215123 Suzhou, Jiangsu, China.
Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.
Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.
JACS Au
December 2024
Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.
Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States.
Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!