Various types of fluid expulsion features (mud volcanoes, pockmarks, authigenic carbonate mounds and associated gas pipes, etc.) are often found above subduction zones, which have the highest seismic potential on Earth. Faults potentially control the liberation of deep-seated greenhouse gases into the feeder systems of seepage features located above subduction thrusts. These feeder systems could be stressed by large earthquakes, yet the mechanisms that can drive episodic mobilization of stored hydrocarbon gases remain poorly understood. Here I address the potential stress loading on fluid expulsion systems created by past earthquakes nucleated at both accretionary and erosive subduction margins. The most significant effects occur in the epicentral area where subduction earthquakes can produce normal stress changes as high as 20-100 bar, although these are generally restricted to relatively small regions. Coseismic normal stress changes and elastic strain relaxation upon a ruptured subduction thrust could increase crustal permeability by dilating fault-controlled conduits, and channelling fluids to the seafloor. Fluid pressure pulses released during subduction earthquakes can greatly contribute to the rupture of fluid pathways that have been brought closer to failure from coseismic static stress changes, although the inaccessible location of most submarine seepage systems has so far hampered probing these relationships.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683289 | PMC |
http://dx.doi.org/10.1038/s41598-019-47686-4 | DOI Listing |
Sci Rep
January 2025
Geology Department Middlebury College, Middlebury, Vermont, 05753, USA.
Inland-normal faulting is recognised as an important process following large subduction earthquakes. The lack of data limits the understanding of how normal fault reactivation relates to the subduction earthquake cycle. We characterised the palaeoseismology of the Atacama fault system (AFS) in the Chilean subduction zone.
View Article and Find Full Text PDFSci Rep
January 2025
Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China.
Slab windows represent regions within the mantle that are largely devoid of slab material, facilitating direct communication between the mantle above and below the subducting slab. This unprecedented interaction disrupts the conventional material-energy exchange mechanisms between the subducted slab and mantle wedge, giving rise to anomalous heat flow, distinct magmatism, metamorphism, and geophysical features. Geochemical analyses of samples collected from the southern margin of the Parece-Vela Basin have illuminated the magmatic processes associated with a slab window.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, Elizabethtown College, Elizabethtown, PA, United States of America.
Many practical disaster reports are published daily worldwide in various forms, including after-action reports, response plans, impact assessments, and resiliency plans. These reports serve as vital resources, allowing future generations to learn from past events and better mitigate and prepare for future disasters. However, this extensive practical literature often has limited impact on research and practice due to challenges in synthesizing and analyzing the reports.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Laboratory of Parallel Architectures for Signal Processing, Universidade Federal do Rio Grande do Norte, Natal 59078-900, RN, Brazil.
We investigate multimodal seismicity by analyzing it as the result of multiple seismic sources. We examine three case studies: the Redoubt and Spurr regions in Alaska, where volcanic and subduction-related seismicity occur, and the Kii Peninsula in Japan, where shallow and deep earthquakes are clearly separated. To understand this phenomenon, we perform spatial, temporal, and magnitude analyses.
View Article and Find Full Text PDFScientifica (Cairo)
December 2024
Laboratory of Plant Systematics, Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Sekip Utara Street, Sleman, Yogyakarta 55281, Indonesia.
Sangihe nutmeg is an important crop because of its usefulness in the pharmacology, spices and cosmetics industries. Sangihe is the oldest active subduction zone island in the Indonesia-Philippines region, where frequent tectonic earthquakes and the geographic and reproductive isolation of Sangihe nutmeg occur. This isolation results in adaptation and speciation because of increasing variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!