Clinical pathologies of bone fracture modelled in zebrafish.

Dis Model Mech

Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, 138673, Singapore

Published: September 2019

Reduced bone quality or mineral density predict susceptibility to fracture and also attenuate subsequent repair. Bone regrowth is also compromised by bacterial infection, which exacerbates fracture site inflammation. Because of the cellular complexity of fracture repair, as well as genetic and environmental influences, there is a need for models that permit visualisation of the fracture repair process under clinically relevant conditions. To characterise the process of fracture repair in zebrafish, we employed a crush fracture of fin rays, coupled with histological and transgenic labelling of cellular responses; the results demonstrate a strong similarity to the phased response in humans. We applied our analysis to a zebrafish model of osteogenesis imperfecta (OI), which shows reduced bone quality, spontaneous fractures and propensity for non-unions. We found deficiencies in the formation of a bone callus during fracture repair in our OI model and showed that clinically employed antiresorptive bisphosphonates can reduce spontaneous fractures in OI fish and also measurably reduce fracture callus remodelling in wild-type fish. The mutant, which has reduced osteoclast numbers, also showed reduced callus remodelling. Exposure to excessive bisphosphonate, however, disrupted callus repair. Intriguingly, neutrophils initially colonised the fracture site, but were later completely excluded. However, when fractures were infected with , neutrophils were retained and compromised repair. This work elevates the zebrafish bone fracture model and indicates its utility in assessing conditions of relevance to an orthopaedic setting with medium throughput.This article has an associated First Person interview with the first author of the paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765199PMC
http://dx.doi.org/10.1242/dmm.037630DOI Listing

Publication Analysis

Top Keywords

fracture repair
16
fracture
11
bone fracture
8
reduced bone
8
bone quality
8
fracture site
8
spontaneous fractures
8
callus remodelling
8
repair
7
bone
6

Similar Publications

Purpose: While treatment modalities for Maisonneuve fractures involving the proximal third of the fibula are established, no studies to date have reported outcomes associated with syndesmotic-only fixation of middle third fibular shaft fractures. The purpose of this study was to evaluate outcomes associated with syndesmotic-only fixation in the treatment of Maisonneuve fractures involving the middle third of the fibula.

Methods: A retrospective review was conducted on 257 cases of syndesmotic ankle instability with associated fibular fractures at a level 1 trauma center between 2013 and 2023.

View Article and Find Full Text PDF

Chronic wounds and injuries remain a substantial healthcare challenge, with significant burdens on patient quality of life and healthcare resources. Mesenchymal stromal cells (MSCs) present an innovative approach to enhance tissue repair and regeneration in the context of wound healing. The intrinsic presence of MSCs in skin tissue, combined with their roles in wound repair, ease of isolation, broad secretory profile, and low immunogenicity, makes them especially promising for treating chronic wounds.

View Article and Find Full Text PDF

TC17 titanium alloy is widely used in the aviation industry for dual-performance blades, and linear friction welding (LFW) is a key technology for its manufacturing and repair. However, accurate evaluation of the mechanical properties of TC17-LFW joints and research on their joint fracture behavior are still not clear. Therefore, this paper used the finite element numerical simulation method (FEM) to investigate the mechanical behavior of the TC17-LFW joint with a complex micro-structure during the tensile processing, and predicted its mechanical properties and fracture behavior.

View Article and Find Full Text PDF

LINC01271 promotes fracture healing via regulating miR-19a-3p/PIK3CA axis.

J Orthop Surg Res

January 2025

Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong, China.

Objective: Osteoporosis increases the risk of fragility fractures, impacting patients' lives. This study aimed to investigate whether LINC01271 was involved in the process of fragility fractures and healing, providing a new perspective for its diagnosis and treatment.

Methods: This study included 94 healthy individuals, 82 patients with osteoporosis, and 85 patients with fragility fractures as subjects.

View Article and Find Full Text PDF

Exploring the role of OIP5-AS1 in the mechanisms of delayed fracture healing: functional insights and clinical implications.

J Orthop Surg Res

January 2025

Department of Orthopaedics, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No. 818, Renminzhong Road, Wuling District, Changde, 415000, Hunan, China.

Objective: Fracture is a common traumatic disease and there is a risk of delayed healing after fracture occurs. This study aimed to explore the regulatory roles and clinical implications of OIP5-AS1 in delayed fracture healing.

Methods: The study included 80 normal fracture healing patients and 80 delayed fracture healing patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!