Background: Diabetes mellitus (DM) is a metabolic disorder that causes abnormal blood glucose (BG) regulation that might result in short and long-term health complications and even death if not properly managed. Currently, there is no cure for diabetes. However, self-management of the disease, especially keeping BG in the recommended range, is central to the treatment. This includes actively tracking BG levels and managing physical activity, diet, and insulin intake. The recent advancements in diabetes technologies and self-management applications have made it easier for patients to have more access to relevant data. In this regard, the development of an artificial pancreas (a closed-loop system), personalized decision systems, and BG event alarms are becoming more apparent than ever. Techniques such as predicting BG (modeling of a personalized profile), and modeling BG dynamics are central to the development of these diabetes management technologies. The increased availability of sufficient patient historical data has paved the way for the introduction of machine learning and its application for intelligent and improved systems for diabetes management. The capability of machine learning to solve complex tasks with dynamic environment and knowledge has contributed to its success in diabetes research.

Motivation: Recently, machine learning and data mining have become popular, with their expanding application in diabetes research and within BG prediction services in particular. Despite the increasing and expanding popularity of machine learning applications in BG prediction services, updated reviews that map and materialize the current trends in modeling options and strategies are lacking within the context of BG prediction (modeling of personalized profile) in type 1 diabetes.

Objective: The objective of this review is to develop a compact guide regarding modeling options and strategies of machine learning and a hybrid system focusing on the prediction of BG dynamics in type 1 diabetes. The review covers machine learning approaches pertinent to the controller of an artificial pancreas (closed-loop systems), modeling of personalized profiles, personalized decision support systems, and BG alarm event applications. Generally, the review will identify, assess, analyze, and discuss the current trends of machine learning applications within these contexts.

Method: A rigorous literature review was conducted between August 2017 and February 2018 through various online databases, including Google Scholar, PubMed, ScienceDirect, and others. Additionally, peer-reviewed journals and articles were considered. Relevant studies were first identified by reviewing the title, keywords, and abstracts as preliminary filters with our selection criteria, and then we reviewed the full texts of the articles that were found relevant. Information from the selected literature was extracted based on predefined categories, which were based on previous research and further elaborated through brainstorming among the authors.

Results: The initial search was done by analyzing the title, abstract, and keywords. A total of 624 papers were retrieved from DBLP Computer Science (25), Diabetes Technology and Therapeutics (31), Google Scholar (193), IEEE (267), Journal of Diabetes Science and Technology (31), PubMed/Medline (27), and ScienceDirect (50). After removing duplicates from the list, 417 records remained. Then, we independently assessed and screened the articles based on the inclusion and exclusion criteria, which eliminated another 204 papers, leaving 213 relevant papers. After a full-text assessment, 55 articles were left, which were critically analyzed. The inter-rater agreement was measured using a Cohen Kappa test, and disagreements were resolved through discussion.

Conclusion: Due to the complexity of BG dynamics, it remains difficult to achieve a universal model that produces an accurate prediction in every circumstance (i.e., hypo/eu/hyperglycemia events). Recently, machine learning techniques have received wider attention and increased popularity in diabetes research in general and BG prediction in particular, coupled with the ever-growing availability of a self-collected health data. The state-of-the-art demonstrates that various machine learning techniques have been tested to predict BG, such as recurrent neural networks, feed-forward neural networks, support vector machines, self-organizing maps, the Gaussian process, genetic algorithm and programs, deep neural networks, and others, using various group of input parameters and training algorithms. The main limitation of the current approaches is the lack of a well-defined approach to estimate carbohydrate intake, which is mainly done manually by individual users and is prone to an error that can severely affect the predictive performance. Moreover, a universal approach has not been established to estimate and quantify the approximate effect of physical activities, stress, and infections on the BG level. No researchers have assessed model predictive performance during stress and infection incidences in a free-living condition, which should be considered in future studies. Furthermore, a little has been done regarding model portability that can capture inter- and intra-variability among patients. It seems that the effect of time lags between the CGM readings and the actual BG levels is not well covered. However, in general, we foresee that these developments might foster the advancement of next-generation BG prediction algorithms, which will make a great contribution in the effort to develop the long-awaited, so-called artificial pancreas (a closed-loop system).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2019.07.007DOI Listing

Publication Analysis

Top Keywords

machine learning
40
learning applications
12
diabetes
12
artificial pancreas
12
pancreas closed-loop
12
modeling personalized
12
neural networks
12
machine
10
learning
10
prediction
8

Similar Publications

Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals.

J Cheminform

December 2024

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.

View Article and Find Full Text PDF

Deep learning-based metabolomics data study of prostate cancer.

BMC Bioinformatics

December 2024

College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.

As a heterogeneous disease, prostate cancer (PCa) exhibits diverse clinical and biological features, which pose significant challenges for early diagnosis and treatment. Metabolomics offers promising new approaches for early diagnosis, treatment, and prognosis of PCa. However, metabolomics data are characterized by high dimensionality, noise, variability, and small sample sizes, presenting substantial challenges for classification.

View Article and Find Full Text PDF

Background: Accurate prediction of pathological complete response (pCR) and disease-free survival (DFS) in locally advanced rectal cancer (LARC) patients undergoing neoadjuvant chemoradiotherapy (NCRT) is essential for formulating effective treatment plans. This study aimed to construct and validate the machine learning (ML) models to predict pCR and DFS using pathomics.

Method: A retrospective analysis was conducted on 294 patients who received NCRT from two independent institutions.

View Article and Find Full Text PDF

Introduction: Vascular access (VA) is essential for patients with hemodialysis, and its dysfunction is a major complication that can reduce quality of life or even threaten life. VA patency is not only difficult to predict on an individual basis, but also challenging to predict in real-time. To overcome this challenge, this study aimed to develop a machine learning approach to predict 6-month primary patency (PP) using photoplethysmography (PPG) signals acquired from the tips of both index fingers.

View Article and Find Full Text PDF

Background: Eye-movement can reflect cognition and provide information on the neurodegeneration, such as Alzheimer's disease (AD). The high cost and limited accessibility of eye-movement recordings have hindered their use in clinics.

Aims: We aim to develop an AI-driven eye-tracking tool for assessing AD using mobile devices with embedded cameras.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!