Charge recombination at the photoelectrode/dye/electrolyte interface decreases the energy conversion efficiency of dye-sensitized solar cells (DSSCs). To suppress charge recombination at this interface in DSSCs, an aluminum oxide (Al₂O₃) film can be deposited as an insulating metal oxide layer on the photoelectrode to form an energy barrier. However, the Al₂O₃ energy barrier can also disturb the transport of injected electrons to the working electrode through the titanium dioxide (TiO₂) photoelectrode. In this study, Al₂O₃ was selectively deposited as an insulating metal oxide layer on the upper side of a TiO₂ photoelectrode, which has a high probability of charge recombination, using plasma-enhanced atomic layer deposition. Deposition of the Al₂O₃ layer by this method helped to minimize the transport rate deterioration of injected electrons. This resulted in an increase of the efficiency of DSSCs containing the Al₂O₃ layer by 42.3% compared with that of a reference DSSC without the insulating metal oxide layer.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17299DOI Listing

Publication Analysis

Top Keywords

charge recombination
12
insulating metal
12
metal oxide
12
oxide layer
12
deposition al₂o₃
8
dye-sensitized solar
8
deposited insulating
8
energy barrier
8
injected electrons
8
tio₂ photoelectrode
8

Similar Publications

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Combination of Broad Light-Absorption CuS with S,C,N-TiO: Assessment of Photocatalytic Performance in Nitrogen Fixation Reaction.

Inorg Chem

January 2025

Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran.

In the field of solar energy storage, photocatalytic ammonia production is a next-generation technology. The rapid recombination of charges and insignificant utilization of the sunlight spectrum are bottlenecks of effective photocatalytic N fixation. The introduction of impurities in the crystal lattice and the development of heterojunctions could effectively segregate carriers and improve the solar-light-harvesting capability, which can boost NH generation.

View Article and Find Full Text PDF

The construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.

View Article and Find Full Text PDF

To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.

View Article and Find Full Text PDF

Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!