Background: Aberrant DNA damage of germ cells, which impairs spermatogenesis and lowers fertility, is an important factor contributing to male infertility. MicroRNAs (miRNAs) play a significant role in the expression and regulation of multiple genes during spermatogenesis. Our previous study found much lower miR-424 (murine homologue miR-322) levels in the seminal plasma of infertile patients with high DFI(DNA Fragmentation Index)than in the fertile group. However, the mechanism by which miR-322 regulates germ cells during spermatogenesis remains unknown.
Methods: In this study, we successfully established a GC-2 cell model of miR-322 downregulation resulting in impaired spermatogenesis. And the cell viability were measured using Cell Counting Kit-8 (CCK-8; Dojindo, Japan) and MTT (Sigma Aldrich, USA). Immunofluorescence assay was used to detect cell damage and the expression of apoptosis-related proteins were measured using real-time quantitative PCR and Western blot analysis. Target genes were predicted and verified by online database retrieval and Dual-luciferase reporter gene assay.
Results: We observed evident decreases in the cell viability of GC-2 cells along with remarkable increases in apoptosis after miR-322 inhibition. While the expression of apoptosis-related genes, including Bax and caspases 3, 9, and 8 greatly increased in GC-2 cells after miR-322 downregulation, that of the anti-apoptotic Bcl-2 gene decreased. Ddx3x was found to be the direct target of miR-322. MiR-424 was then detected in the seminal plasma of infertile patients with high DFI(DNA Fragmentation Index); this miRNA was down-regulated but Ddx3x was upregulated in the infertile group.
Conclusion: MiR-322 plays a key role in promoting GC-2 cell apoptosis by directly regulating Ddx3x expression. MiR-424 downregulation in infertile men may induce spermatogenic cell apoptosis and sperm DNA damage by directly acting on the target gene locus Ddx3x, resulting in male infertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683552 | PMC |
http://dx.doi.org/10.1186/s12958-019-0506-7 | DOI Listing |
Mol Biomed
December 2024
Clinical Medicine Postgraduate Workstation, Soochow University, Xuzhou, 221009, China.
This study aimed to investigate the influence of sperm miRNAs on fertilization rates (FR) in in vitro fertilization (IVF) and to explore potential regulatory mechanisms in sperm-mediated fertilization and embryo development. Through high-throughput sequencing, we identified differentially expressed miRNAs in sperm, with miR-133a-3p significantly upregulated in samples associated with low FR and available embryo rate (AER). Key regulatory circRNAs and mRNAs were further identified via the Starbase database, intersected with differentially expressed RNA, and analyzed through GO, KEGG, and PPI analyses.
View Article and Find Full Text PDFFood Chem Toxicol
December 2024
Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China. Electronic address:
Reprod Sci
December 2024
School of Life Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China.
Evidence of endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) have been increasingly reported in varicocele (VCL)-affected testes. However, the mechanisms by which oxidative stress (OS) and ER stress contribute to male infertility in VCL remain unclear. In this study, male Sprague-Dawley rats were divided into a control group, which underwent sham surgery, and a VCL group, in which VCL was surgically induced.
View Article and Find Full Text PDFReprod Toxicol
November 2024
Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China. Electronic address:
Genes (Basel)
October 2024
Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia.
The phytosulfokine receptor () gene family plays a crucial role in regulating plant growth, development, and stress response. Here, the gene family was characterized in L. The study aimed to bridge knowledge gaps and clarify the functional roles of to create a solid foundation for examining the structure, functions, and regulatory aspects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!