Halogenated solvents are prevailingly used in the fabrication of nonfullerene organic solar cells (NF-OSCs) at the current stage, imposing significant restraints on their practical applications. By copolymerizing phthalimide or thieno[3,4-]pyrrole-4,6-dione (TPD) with 1,4-di(3-alkoxy-2-thienyl)-2,5-difluorophenylene (DOTFP), which features intramolecular noncovalent interactions, the backbone planarity of the resulting DOTFP-based polymers can be effectively tuned, yielding distinct solubilities, aggregation characters, and chain packing properties. Polymer DOTFP-PhI with a more twisted backbone showed a lower degree of aggregation in solution but an increased film crystallinity than polymer DOTFP-TPD. An organic thin-film transistor and NF-OSC based on DOTFP-PhI, processed with a nonhalogenated solvent, exhibited a high hole mobility up to 1.20 cm V s and a promising power conversion efficiency up to 10.65%, respectively. The results demonstrate that DOTFP is a promising building block for constructing wide bandgap polymers and backbone coplanarity tuning is an effective strategy to develop high-performance organic semiconductors processable with a nonhalogenated solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b09692DOI Listing

Publication Analysis

Top Keywords

nonhalogenated solvent
12
backbone coplanarity
8
coplanarity tuning
8
wide bandgap
8
bandgap polymers
8
organic solar
8
solar cells
8
processed nonhalogenated
8
backbone
4
tuning 14-di3-alkoxy-2-thienyl-25-difluorophenylene-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!