Evaluation and validation studies of quantitative exposure models for occupational exposure assessment are still scarce and generally only consider a limited number of exposure scenarios. The aim of this review was to report the current state of knowledge of models' reliability in terms of precision, accuracy, and robustness. A systematic review was performed through searches of major scientific databases (Web of Science, Scopus, and PubMed), concerning reliability of Tier1 ("ECETOC TRA"-European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment, MEASE, and EMKG-Expo-Tool) and Tier2 models (STOFFENMANAGER and "ART"-Advanced Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) Tool). Forty-five studies were identified, and we report the complete information concerning model performance in different exposure scenarios, as well as between-user reliability. Different studies describe the ECETOC TRA model as insufficient conservative to be a Tier1 model, in different exposure scenarios. Contrariwise, MEASE and EMKG-Expo-Tool seem to be conservative enough, even if these models have not been deeply evaluated. STOFFENMANAGER resulted the most balanced and robust model. Finally, ART was generally found to be the most accurate and precise model, with a medium level of conservatism. Overall, the results showed that no complete evaluation of the models has been conducted, suggesting the need for correct and harmonized validation of these tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695664PMC
http://dx.doi.org/10.3390/ijerph16152764DOI Listing

Publication Analysis

Top Keywords

exposure scenarios
12
models' reliability
8
mease emkg-expo-tool
8
exposure
5
model
5
reliable estimate
4
estimate occupational
4
occupational exposure?
4
exposure? review
4
review discussion
4

Similar Publications

Assessing Changes in Permethrin Toxicity to Juvenile Inland Silversides (Menidia beryllina) Under Different Temperature Scenarios.

Arch Environ Contam Toxicol

January 2025

Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.

Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.

View Article and Find Full Text PDF

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

The objective of this study was to investigate the characteristics and trends of therapeutic errors in non-healthcare facility settings associated with antithrombotic medications reported to United States Poison Centers by analyzing data from the National Poison Data System from 2000 to 2021. There were 57 288 reported therapeutic error-related exposures involving antithrombotic medications as the primary substance. The rate of therapeutic errors increased by 590.

View Article and Find Full Text PDF

Background: Model-informed precision dosing (MIPD) combines population pharmacokinetic knowledge with therapeutic drug monitoring (TDM) to optimize dosage adjustment. It could improve target concentration attainment over empirical TDM, still widely practised for broad-spectrum antibiotics.

Objectives: To evaluate the respective performance of TDM and MIPD in achieving target piperacillin exposure.

View Article and Find Full Text PDF

Eye lens dosimetry: does the direction of rotation (vertical or horizontal) play a role in type testing?

J Radiol Prot

January 2025

Radiation Protection Dosimetry (6.3), Physikalisch-Technische Bundesanstalt, Braunschweig, NDS, GERMANY.

With the International Commission on Radiological Protection (ICRP) lowering the annual dose limit for the eye lens to 20 mSv, precise monitoring of eye lens exposure has become essential. The personal dose equivalent at a depth of 3 mm, Hp(3), is the measurement method for monitoring the dose to the lens of the eye. Traditional dosimetry methods primarily address lateral radiation exposure scenarios, where radiation approaches from the left or right, necessitating the rotation of the phantom during type testing around the vertical axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!