Structure and Mechanical Properties of Multi-Walled Carbon Nanotubes-Filled Isotactic Polypropylene Composites Treated by Pressurization at Different Rates.

Polymers (Basel)

Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.

Published: August 2019

Isotactic polypropylene filled with 1 wt.% multi-walled carbon nanotubes (iPP/MWCNTs) were prepared, and their crystallization behavior induced by pressurizing to 2.0 GPa with adjustable rates from 2.5 to 1.3 × 10 MPa/s was studied. The obtained samples were characterized by combining wide angle X-ray diffraction, small angle X-ray scattering, differential scanning calorimetry, transmission electron microscopy and atomic force microscopy techniques. It was found that pressurization is a simple way to prepare iPP/MWCNTs composites in mesophase, γ-phase, or their blends. Two threshold pressurization rates marked as and were identified, while corresponds to the onset of mesomorphic iPP formation. When the pressurization rate is lower than only γ-phase generates, with its increasing mesophase begins to generate and coexist with γ-phase, and if it exceeds only mesophase can generate. When iPP/MWCNTs crystallized in γ-phase, compared with the neat iPP, the existence of MWCNTs can promote the nucleation of γ-phase, leading to the formation of γ-crystal with thicker lamellae. If iPP/MWCNTs solidified in mesophase, MWCNTs can decrease the growth rate of the nodular structure, leading to the formation of mesophase with smaller nodular domains (about 9.4 nm). Mechanical tests reveal that, γ-iPP/MWCNTs composites prepared by slow pressurization display high Young's modulus, high yield strength and high elongation at break, and meso-iPP/MWCNTs samples have excellent deformability because of the existence of nodular morphology. In this sense, the pressurization method is proved to be an efficient approach to regulate the crystalline structure and the properties of iPP/MWCNTs composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6723393PMC
http://dx.doi.org/10.3390/polym11081294DOI Listing

Publication Analysis

Top Keywords

multi-walled carbon
8
isotactic polypropylene
8
pressurization rates
8
angle x-ray
8
ipp/mwcnts composites
8
mesophase generate
8
leading formation
8
pressurization
6
ipp/mwcnts
5
mesophase
5

Similar Publications

Tirofiban hydrochloride is used to inhibit platelet aggregation, which has a significant impact on the treatment of congestive heart failure the most common cause of death according to WHO. Therefore, its quantification in pharmaceutical dosage form is critical. In this work, an electrochemical method for the determination of tirofiban HCl in pharmaceutical dosage form was developed and validated.

View Article and Find Full Text PDF

This study presents the preparation, characterization, and application of a novel Multi-walled carbon nanotubes/TiO/chitosan (MWCNT/TiO/CS) nanocomposite, prepared using a hydrothermal method, for the removal of malachite green (MG) dye from aqueous solutions. Adsorption studies revealed optimal dye removal within 15 min of adsorption equilibrium time, with maximum removal efficiency of 98.53 % at pH 7.

View Article and Find Full Text PDF

Near Real-Time Measurement of Airborne Carbon Nanotubes with Metals Using Raman-Spark Emission Spectroscopy.

Appl Spectrosc

January 2025

Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou, Jiangsu, China.

We present a near real-time measurement method that combines Raman and spark emission spectroscopy to quantitatively analyze the molecular structure of airborne single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), as well as detect toxic metals within CNTs. A corona-based aerosol microconcentrator was used for airborne CNTs sampling to enhance the measurement accuracy and sensitivity. The intensity of the characteristic Raman bands of CNTs and atomic emission lines of metals exhibited a linear relationship with the analyte mass, yielding high coefficient values.

View Article and Find Full Text PDF

In this study, we investigate the thermoelectric properties of functionalized multi-walled carbon nanotubes (F-MWCNTs) dispersed over a flexible substrate through a facile vacuum filtration route. To improve their interfacial adhesion and dispersion, F-MWCNTs underwent hot-pressing. The heat-treatment has improved the nanotubes' connections and subsequently reduced porosity as well, which results in an increasing electrical conductivity upon increasing temperature of hot-pressing.

View Article and Find Full Text PDF
Article Synopsis
  • Multi-walled carbon nanotubes (CNT) are embedded with RuPdIrPtAu high entropy alloys (HEA) using pulsed laser irradiation in liquids, resulting in a composite that enhances hydrazine oxidation reactions (HzOR) for improved water electrolysis.
  • HEA particles, sized around 2-5 nm, are effectively dispersed on the CNTs, allowing an optimized variant (HEA/CNT-10) to demonstrate superior performance in oxygen and hydrogen evolution reactions (OER and HER), showing low overpotentials of 30.7 mV for OER and 330 mV for HER.
  • The composite exhibits a lower voltage requirement of 0.1 V for HzOR compared to the 1.56
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!