The classical Lorentz reciprocal theorem (LRT) was originally derived for slow viscous flows of incompressible Newtonian fluids under the isothermal condition. In the present work, we extend the LRT from simple to complex fluids with open or moving boundaries that maintain non-equilibrium stationary states. In complex fluids, the hydrodynamic flow is coupled with the evolution of internal degrees of freedom such as the solute concentration in two-phase binary fluids and the spin in micropolar fluids. The dynamics of complex fluids can be described by local conservation laws supplemented with local constitutive equations satisfying Onsager's reciprocal relations (ORR). We consider systems in quasi-stationary states close to equilibrium, controlled by the boundary variables whose evolution is much slower than the relaxation in the system. For these quasi-stationary states, we derive the generalized LRT and global Onsager's reciprocal relations (GORR) for the slow variables at boundaries. This establishes the connection between ORR for local constitutive equations and GORR for constitutive equations at boundaries. Finally, we show that the LRT can be further extended to non-isothermal systems by considering as an example the thermal conduction in solids and still fluids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab3898 | DOI Listing |
J Acoust Soc Am
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.
View Article and Find Full Text PDFProteasomes are essential for protein degradation and maintaining cellular balance, yet their roles in extracellular fluids are not well understood. Our study investigates the freely circulating proteasome in blood, to uncover its unique molecular characteristics, compared to its intracellular counterparts. Using a transgenic mouse model, mass spectrometry, and biochemical tools, we show that the predominant proteasome in serum is the free uncapped 20S particle, which seems to assemble intracellularly before entering the bloodstream.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
We present a rare case of asymptomatic allergic bronchopulmonary aspergillosis (ABPA) concurrent with active pulmonary tuberculosis. Allergic bronchopulmonary aspergillosis is an immunological pulmonary disorder characterized by hypersensitivity to Aspergillus fumigatus, while pulmonary tuberculosis (PTB) is a complex infection caused by Mycobacterium tuberculosis (MTB). The association between pulmonary tuberculosis infections and Aspergillus infections remains a fascinating area of inquiry.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir 35430, Turkiye.
Centrifugation is crucial for size and density-based sample separation, but low-volume or delicate samples suffer from loss and impurity issues during repeated spins. We introduce the "Spinochip", a novel microfluidic system utilizing centrifugal forces for efficient filling of dead-end microfluidic channels. The Spinochip enables versatile fluid manipulation with a single reservoir for both inlet and outlet functions.
View Article and Find Full Text PDFActa Biomater
January 2025
Biomedical Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK. Electronic address:
The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion and managing degenerative conditions like osteoarthritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!