Chlorination and ozonation of various waters may be associated with the formation of toxic disinfection byproducts (DBPs) and cause health risks to humans. Monitoring the toxicity of chlorinated and ozonated water and identification of different toxicity mechanisms are therefore required. This study is one of its kind to examine the toxic effects of chlorinated and ozonated wastewater effluents on three genetically modified bioluminescent bacteria, in comparison to the naturally isolated cyanobacteria, Spirulina strains as test systems. Three different secondary wastewater effluents were collected from treatment plants, chlorinated using sodium hypochlorite (at 1 and 10 mg L of chlorine) or treated using 3-4 mg L of ozone at different contact times. As compared to cyanobacterial Spirulina sp., the genetically modified bacteria enhancing bioluminescence at the presence of stress agents demonstrated greater sensitivity to the toxicity induction and have also provided mechanism-specific responses associated with genotoxicity, cytotoxicity and reactive oxygen species (ROS) generation in wastewater effluents. Effects of effluent chlorination time and chlorine concentration revealed by means of bioluminescent bacteria suggest the formation of genotoxic and cytotoxic DBPs followed with their possible disappearance at longer times. Ozonation could degrade genotoxic compounds in some effluents, but the cytotoxic potential of wastewater effluents may certainly increase with ozonation time. No induction of ROS-related toxicity was detected in either chlorinated or ozonated wastewater effluents. UV absorbance- and fluorescence emission-based spectroscopic characteristics may be variously correlated with changes in genotoxicity in ozonated effluents, however, no associations were obtained in chlorinated wastewater effluents. The bacterial response to the developed mechanism-specific toxicity differs among wastewater effluents, reflecting variability in effluent compositions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.114910 | DOI Listing |
J Environ Manage
January 2025
Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
High salts concentrations in wastewater hinder its biological treatment. Recent research has investigated the inhibitory effect of salinity on the anammox process, mainly focusing on NaCl. Thus, the inhibition caused by multi-electrolytes salinity on freshwater anammox bacteria remains unclear.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), Yliopistonkatu 34, 53850, Lappeenranta, Finland.
As the global consumption of pharmaceuticals increases, so does their release into water bodies. The effects, although not fully understood, can be detrimental to aquatic ecosystems and human health. The new Urban Wastewater Treatment Directive (UWWTD) in European Union requires implementation of quaternary wastewater treatment processes to limit the loads of pharmaceuticals reaching water bodies.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Fashion Technology, PSG College of Technology, Coimbatore, 641004, India.
Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.
View Article and Find Full Text PDFWater Res
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Iron-based constructed wetlands (ICWs) displayed great potential in deep nitrogen elimination for low-polluted wastewater. However, the unsatisfactory denitrification performance caused by the limited solubility and sluggish activity of iron substrates needs to be improved in an eco-effective manner. To fill this gap, the bioavailability of iron substrates (iron scraps) affected by wetland biomass-derived carbon materials with potential conductivity were explored.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Basic Science Department, Preparatory Year, University of Ha'il, Ha'il City, 1560, Saudi Arabia.
This review article provides a thorough examination of an interaction between linear alkylbenzenes (LABs) and ecosystems. The review covers various aspects of LABs' impact on ecosystems, focusing on detection and treatment strategies to mitigate ecological consequences. It delves into LABs' role as molecular markers for sewage pollution, their physicochemical properties contributing to persistence, and their effects on aquatic and terrestrial organisms, including disruptions to endocrine systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!