In drug discovery, as well as in the study of disease biology, it is fundamental to develop models that recapitulate aspects of a disorder, in order to understand the pathology and test therapeutic approaches. Patient-derived induced pluripotent stem cells (iPSCs) offer the potential of obtaining tissue-specific cells with a given human genotype. Here we derived neural cultures from Alzheimer's disease patient iPSCs and characterized their response to three classes of compounds that reduce the production of Aβ42, a major driving force of this pathology. We characterized their effect on the cells, looking at Tau proteostasis and gene expression changes by RNAseq. β-secretase inhibitor and γ-secretase modulators left the transcriptional balance of the cells virtually unaffected, while γ-secretase inhibitors caused drastic gene expression changes due to Notch inhibition. We observed similar effects in vivo, treating mice with the same compound classes. Our results show that β-secretase inhibitors and γ-secretase modulators are attractive candidates for modulating Aβ production in Alzheimer's disease. Moreover, we demonstrate that the response to compounds obtained with iPSC-derived neurons is similar to the one observable in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2019.103392DOI Listing

Publication Analysis

Top Keywords

gene expression
12
alzheimer's disease
12
aβ production
8
ipsc-derived neurons
8
expression changes
8
γ-secretase modulators
8
gamma secretase
4
secretase modulators
4
modulators bace
4
bace inhibitors
4

Similar Publications

Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.

Results: Forty male Wistar rats divided into five groups of eight rats were used.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!