Site-directed mutagenesis and stability of the carboxylic acid reductase MAB4714 from Mycobacterium abscessus.

J Biotechnol

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada; Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK. Electronic address:

Published: September 2019

Carboxylic acid reductases (CARs) catalyze ATP- and NADPH-dependent reduction of carboxylic acids to corresponding aldehydes. Although successful applications of these enzymes for the bioconversion of monocarboxylic acids have already been reported, their applicability for the reduction of dicarboxylic acids is not well understood. Here, we explored the possibility of engineering CARs for enhanced activity toward succinic acid for potential applications in 1,4-butanediol production. Structural models of the carboxylate-binding pocket of the CAR enzyme MAB4714 from Mycobacterium abscessus suggested that its reactivity toward succinic acid could be enhanced by reducing the pocket volume. Using site-directed mutagenesis, we introduced larger side chains into the MAB4714 carboxylate binding pocket and compared the activity of 16 mutant proteins against cinnamic and succinic acids. These experiments revealed that, although the reaction rates remain low, the replacement of Leu284 or Thr285 with Trp increased activity toward succinic acid more than two times. The T285E mutant protein also showed increased activity toward succinic acid, but it was lower than that of T285W. The mutated residues of MAB4714 are located on the flexible loop covering the carboxylate-binding pocket, which appears to contribute to substrate preference of CARs. Thus, reductase activity of CARs against succinic acid can be improved by introducing large side chains into the carboxylate-binding pocket. We also discovered that alanine replacement of the conserved Ser713 in the CAR phosphopantetheine attachment site resulted in complete degradation of the full-length protein into separate A and R domains, suggesting that CAR phosphopantetheinylation is important for its stability in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2019.07.009DOI Listing

Publication Analysis

Top Keywords

succinic acid
20
activity succinic
12
carboxylate-binding pocket
12
site-directed mutagenesis
8
carboxylic acid
8
mab4714 mycobacterium
8
mycobacterium abscessus
8
side chains
8
increased activity
8
acid
7

Similar Publications

Effects of Luteolin Treatment on Postharvest Quality and Antioxidant Capacity of Nanfeng Tangerines.

Foods

December 2024

Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.

Postharvest quality deterioration is a major factor affecting the economic value and marketing of Nanfeng tangerines. The objective of this study was to explore the effects of luteolin treatment on the postharvest quality and antioxidant capacity of Nanfeng tangerines. We applied 1 g/L and 3 g/L luteolin to fruit after harvest and evaluated the decay rate, postharvest quality, and antioxidant capacity during a 60-day storage period at room temperature.

View Article and Find Full Text PDF

Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings.

View Article and Find Full Text PDF

Alkaline salts have more severe adverse effects on plant growth and development than neutral salts do. However, the adaptive mechanisms of plants to alkaline salt stress remain poorly understood, especially at the molecular level. The Songnen Plain in northeast China is composed of typical 'soda' saline-alkali soil, with NaHCO and NaCO as the predominant alkaline salts (pH ≥ 9.

View Article and Find Full Text PDF

The genus Euphorbia, belonging to the family Euphorbiaceae, represents a significant ethnobotanical heritage due to the diverse bioactive properties exhibited. In this study, the phytochemical composition and biological activities of latex and aerial parts of the water extract of Euphorbia gaillardotii were investigated. Phytochemical analyses were performed using gas chromatography-mass spectrometry and high-performance liquid chromatography techniques and total antioxidants, phenolics, sugars, organic acids, and aroma components were quantitatively determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!