Nanoparticles (NPs) formulated with cationic lipids and/or polymers have shown substantial potential for systemic delivery of RNA therapeutics such as small interfering RNA (siRNA) for the treatment of cancer and other diseases. While both cationic lipids and polymers have demonstrated the promise to facilitate siRNA encapsulation and endosomal escape, they could also hamper cytosolic siRNA release due to charge interaction and induce potential toxicities. Herein, a unique polymer-prodrug hybrid NP platform was developed for multistage siRNA delivery and combination cancer therapy. This NP system is composed of (i) a hydrophilic polyethylene glycol (PEG) shell, (ii) a hydrophobic NP core made with a tumor microenvironment (TME) pH-responsive polymer, and (iii) charge-mediated complexes of siRNA and amphiphilic cationic mitoxantrone (MTO)-based prodrug that are encapsulated in the NP core. After intravenous administration, the long-circulating NPs accumulate in tumor tissues and then rapidly release the siRNA-prodrug complexes via TME pH-mediated NP disassociation for subsequent tissue penetration and cytosolic transport. With the overexpressed esterase in tumor cells to hydrolyze the amphiphilic structure of the prodrug and thereby induce destabilization of the siRNA-prodrug complexes, the therapeutic siRNA and anticancer drug MTO can be efficiently released in the cytoplasm, ultimately leading to the combinational inhibition of tumor growth via concurrent RNAi-mediated gene silencing and MTO-mediated chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b01660 | DOI Listing |
J Nanobiotechnology
June 2023
College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
Typical chemo-immunotherapy against malignant carcinoma, is characterized by the combined application of chemotherapeutic agents and monoclonal antibodies for immune checkpoint blockade (ICB). Temporary ICB with antibodies would not depress tumor intrinsic PD-L1 expression and potential PD-L1 adaptive upregulation during chemotherapy, thus exerting limited immunotherapy efficacy. Herein, we developed novel polymer-lipid hybrid nanoparticles (2-BP/CPT-PLNs) for inducing PD-L1 degradation by inhibiting palmitoylation with bioactive palmitic acid analog 2-bromopalmitate (2-BP) to replace PD-L1 antibody (αPD-L1) for ICB therapy, thus achieving highly efficient antitumor immune via immunogenic cell death (ICD) induced by potentiated chemotherapy.
View Article and Find Full Text PDFJ Control Release
December 2021
PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China. Electronic address:
As most of intracellular reactive oxygen species (ROS) is produced in the mitochondria, mitochondrial modulation of cancer cell is a promising strategy for maximizing the in situ-activable combination therapy of oxidative catastrophe and cascaded chemotherapy. Herein, a serum-stable polymer‑calcium phosphate (CaP) hybrid nanocapsule carrying siRNA against ADP-ribosylation factor 6 (Arf6) overexpressed in cancer cells and parent drug camptothecin (CPT), designated as PTkCPT/siRNA, was developed for the RNAi-induced oxidative catastrophe and cascaded chemotherapy. A copolymer of mPEG-P(Asp-co-TkCPT), covalently tethered with chemotherapeutic CPT via a ROS-labile dithioketal (Tk) linker, was synthesized and self-assembled into a PTkCPT micelle as a nanotemplate for the CaP mineralization.
View Article and Find Full Text PDFNano Lett
September 2019
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University, Guangzhou 510120 , P. R. China.
Nanoparticles (NPs) formulated with cationic lipids and/or polymers have shown substantial potential for systemic delivery of RNA therapeutics such as small interfering RNA (siRNA) for the treatment of cancer and other diseases. While both cationic lipids and polymers have demonstrated the promise to facilitate siRNA encapsulation and endosomal escape, they could also hamper cytosolic siRNA release due to charge interaction and induce potential toxicities. Herein, a unique polymer-prodrug hybrid NP platform was developed for multistage siRNA delivery and combination cancer therapy.
View Article and Find Full Text PDFTheranostics
May 2019
Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China.
Treatment for metastatic cancer is a great challenge throughout the world. Commonly, directed inhibition of extracellular matrix metalloproteinases (MMPs) secreted by cancer cells can reduce metastasis. Here, a novel nanoplatform (HPMC NPs) assembled from hyaluronic acid (HA)-paclitaxel (PTX) prodrug and marimastat (MATT)/β-casein (CN) complexes was established to cure a 4T1 metastatic cancer model targeting CD44 and intracellular, rather than extracellular, MMPs.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
June 2019
a Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai , PR China.
To remedy the problems resulting from the usage of anti-cancer drugs in cancer chemotherapy, such as deficient drug concentration in tumour cells, low water-solubility and non-specific distribution of antitumour drugs, a kind of reduction-sensitive polymer prodrug of curcumin (Cur) containing in the nano-echinus was synthesized and designed. The nano-echinus-like nanomedicine presented synergistic effect with glycyrrhetic acid (GA) and oligomeric hyaluronic (HA) for targeting and combating HepG2 human liver cancer cell. Firstly, a kind of small molecular prodrug of Cur, dithiodipropionic acid-Cur (-SS-Cur), was chemically conjugated onto the side chain of the conjugated glycyrrhetic acid- oligomeric hyaluronic (GA-HA) to generate an amphiphilic polymeric prodrug of Cur, GA-HA-SS-Cur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!