Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Endemic areas for soil-transmitted helminthiases often lack the tools and trained personnel necessary for point-of-care diagnosis. This study pilots the use of smartphone microscopy and an artificial neural network-based (ANN) object detection application named Kankanet to address those two needs.
Methodology/principal Findings: A smartphone was equipped with a USB Video Class (UVC) microscope attachment and Kankanet, which was trained to recognize eggs of Ascaris lumbricoides, Trichuris trichiura, and hookworm using a dataset of 2,078 images. It was evaluated for interpretive accuracy based on 185 new images. Fecal samples were processed using Kato-Katz (KK), spontaneous sedimentation technique in tube (SSTT), and Merthiolate-Iodine-Formaldehyde (MIF) techniques. UVC imaging and ANN interpretation of these slides was compared to parasitologist interpretation of standard microscopy.Relative to a gold standard defined as any positive result from parasitologist reading of KK, SSTT, and MIF preparations through standard microscopy, parasitologists reading UVC imaging of SSTT achieved a comparable sensitivity (82.9%) and specificity (97.1%) in A. lumbricoides to standard KK interpretation (97.0% sensitivity, 96.0% specificity). The UVC could not accurately image T. trichiura or hookworm. Though Kankanet interpretation was not quite as sensitive as parasitologist interpretation, it still achieved high sensitivity for A. lumbricoides and hookworm (69.6% and 71.4%, respectively). Kankanet showed high sensitivity for T. trichiura in microscope images (100.0%), but low in UVC images (50.0%).
Conclusions/significance: The UVC achieved comparable sensitivity to standard microscopy with only A. lumbricoides. With further improvement of image resolution and magnification, UVC shows promise as a point-of-care imaging tool. In addition to smartphone microscopy, ANN-based object detection can be developed as a diagnostic aid. Though trained with a limited dataset, Kankanet accurately interprets both standard microscope and low-quality UVC images. Kankanet may achieve sensitivity comparable to parasitologists with continued expansion of the image database and improvement of machine learning technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695198 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0007577 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!