Multilevel protein structures typically involve polypeptides of sufficient lengths. Here we report the folding and assembly of seven short tetrapeptides sharing the same types of α-, β-, and aromatic γ-amino acid residues. These are two sets of hybrid peptides, with three members in one set and four in the other, having complementary hydrogen-bonding sequences that were hypothesized to pair into linear H-bonded duplexes. However, instead of undergoing the anticipated pairing, the initially examined three oligomers, and or , differing only in their central αβ hybrid dipeptide sequence, do not associate with each other and exhibit distinctly different folding behavior. Experiments based on NMR and mass spectrometry, along with computational studies and systematic inference, reveal that oligomer folds into an expanded β-turn containing an unusual hybrid α/β-amino acid sequence composed of glycine and β-alanine, two α- and β-amino acid residues that are conformationally most flexible, and peptides and adopt a noncanonical, extended helical conformation and dimerize into double helices undergoing rapid conformational exchange or helix inversion. The different central dipeptide sequences, αβ vs βα, result in drastically different intramolecular H-bonding patterns that are responsible for the observed folding behavior of and . The revealed turn and double helix have few natural or synthetic counterparts, and provide novel and unique folding prototypes based on which chiral α- and β-amino acids are incorporated. The resultant derivatives , , , and follow the same folding and assembling behavior and demonstrate the generality of this system with the formation of expanded β-turns and double helices with enhanced folding stabilities, hampered helix inversion, as well as defined and dominant helical sense. This work has demonstrated the unique capability of synthetic foldamers in generating structures with fascinating folding and assembling behavior. The revealed systems offer ample opportunity for further structural optimization and applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b06094 | DOI Listing |
Soft Matter
January 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
September 2024
Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan.
Dynamic chest radiography (DCR) is a novel radiographic technique that evaluates the thoracic movement from inspiration to expiration. Here, we report the efficacy of DCR in the surgical treatment of diaphragmatic paralysis. A 60-year-old woman presented with phrenic nerve palsy after anterior mediastinal resection.
View Article and Find Full Text PDFJAAD Case Rep
January 2025
Division of Dermatology, John H. Stroger Hospital of Cook County, Chicago, Illinois.
Expert Rev Proteomics
January 2025
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
Introduction: Molecular recognition features (MoRFs) are regions in protein sequences that undergo induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted from sequences based on their distinctive sequence signatures.
Areas Covered: We overview twenty years of progress in the sequence-based prediction of MoRFs which resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides and lipids.
Nat Commun
January 2025
Interdisciplinary Science Center, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
Fluorogenic RNA aptamers have various applications, including use as fluorescent tags for imaging RNA trafficking and as indicators of RNA-based sensors that exhibit fluorescence upon binding small-molecule fluorophores in living cells. Current fluorogenic RNA:fluorophore complexes typically emit visible fluorescence. However, it is challenging to develop fluorogenic RNA with near-infrared (NIR) fluorescence for in vivo imaging and sensing studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!