Many patients with Alzheimer's dementia (AD) also exhibit noncognitive symptoms such as sensorimotor deficits, which can precede the hallmark cognitive deficits and significantly impact daily activities and an individual's ability to live independently. However, the mechanisms underlying sensorimotor dysfunction in AD and their relationship with cognitive decline remains poorly understood, due in part to a lack of translationally relevant animal models. To address this, we recently developed a novel model of genetic diversity in Alzheimer's disease, the AD-BXD genetic reference panel. In this study, we investigated sensorimotor deficits in the AD-BXDs and the relationship to cognitive decline in these mice. We found that age- and AD-related declines in coordination, balance and vestibular function vary significantly across the panel, indicating genetic background strongly influences the expressivity of the familial AD mutations used in the AD-BXD panel and their impact on motor function. Although young males and females perform comparably regardless of genotype on narrow beam and inclined screen tasks, there were significant sex differences in aging- and AD-related decline, with females exhibiting worse decline than males of the same age and transgene status. Finally, we found that AD motor decline is not correlated with cognitive decline, suggesting that sensorimotor deficits in AD may occur through distinct mechanisms. Overall, our results suggest that AD-related sensorimotor decline is strongly dependent on background genetics and is independent of dementia and cognitive deficits, suggesting that effective therapeutics for the entire spectrum of AD symptoms will likely require interventions targeting each distinct domain involved in the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899779PMC
http://dx.doi.org/10.1111/gbb.12603DOI Listing

Publication Analysis

Top Keywords

sensorimotor deficits
12
cognitive decline
12
genetic background
8
decline
8
sensorimotor decline
8
model genetic
8
genetic diversity
8
diversity alzheimer's
8
alzheimer's disease
8
cognitive deficits
8

Similar Publications

Background: Cognitive and neuropsychiatric impairment, known as cerebellar cognitive affective syndrome (CCAS), may be present in cerebellar disorders. This study identified distinct CCAS subtypes in cerebellar patients using cluster analysis.

Methods: The German CCAS-Scale (G-CCAS-S), a brief screening test for CCAS, was assessed in 205 cerebellar patients and 200 healthy controls.

View Article and Find Full Text PDF

Schizophrenia is a kind of neurodevelopmental mental disorder in which patients begin to experience changes early in their development, typically manifesting around or after puberty and has a fluctuating course. Environmental disturbances during adolescence may be a risk factor for schizophrenia-like deficits. As a better treatment option, preventive intervention prior to schizophrenia may be more beneficial than direct treatment.

View Article and Find Full Text PDF

Background: Non-invasive photobiomodulation therapy (PBMT), employing specific infrared light wavelengths to stimulate biological tissues, has recently gained attention for its application to treat neurological disorders. Here, we aimed to uncover the cellular targets of PBMT and assess its potential as a therapeutic intervention for multiple sclerosis (MS).

Methods: We applied daily dorsoventral PBMT in an experimental autoimmune encephalomyelitis (EAE) mouse model, which recapitulates key features of MS, and revealed a strong positive impact of PBMT on the sensorimotor deficits.

View Article and Find Full Text PDF

Importance: There is unclear evidence on when to initiate physical therapy after mild traumatic brain injury (mTBI) in non-athlete, adult population.

Objective: The objective of this study was to investigate physical therapy timing after mTBI through changes in patient-reported and clinically-assessed tools and objective and mechanism measurements of sensorimotor balance control.

Design: This study was an investigator-blinded randomized control trial (NCT03479541).

View Article and Find Full Text PDF

Co-developing sleep-wake and sensory foundations for cognition in the human fetus and newborn.

Dev Cogn Neurosci

December 2024

Research Division of Digital Health and Applied Technology Assessment (DHATA), Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, James Clerk Maxwell Building, 57 Waterloo Rd, London SE1 8WA, UK. Electronic address:

In older children and adults, cognition builds upon waking sensory experience which is consolidated during sleep. In the fetus and newborn, sensory input is instead largely experienced during sleep. The nature of these sensory inputs differs within sleep, between active and quiet sleep, as well as versus wakefulness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!