Most synthetic bone grafts are either hard and brittle ceramics or paste-like materials that differ in applicability from the gold standard autologous bone graft, which restricts their widespread use. Therefore, the aim of the study was to develop an elastic, highly porous and biodegradable β-tricalciumphosphate/poly(L-lactide-co-ε-caprolactone) (β-TCP/PLCL) composite for bone applications using supercritical CO2 foaming. Ability to support osteogenic differentiation was tested in human adipose stem cell (hASC) culture for 21 d. Biocompatibility was evaluated for 24 weeks in a rabbit femur-defect model. Foamed composites had a high ceramic content (50 wt%) and porosity (65-67 %). After 50 % compression, in an aqueous environment at 37 °C, tested samples returned to 95 % of their original height. Hydrolytic degradation of β-TCP/PLCL composite, during the 24-week follow-up, was very similar to that of porous PLCL scaffold both in vitro and in vivo. Osteogenic differentiation of hASCs was demonstrated by alkaline phosphatase activity analysis, alizarin red staining, soluble collagen analysis, immunocytochemical staining and qRT-PCR. In vitro, hASCs formed a pronounced mineralised collagen matrix. A rabbit femur defect model confirmed biocompatibility of the composite. According to histological Masson-Goldner's trichrome staining and micro-computed tomography, β-TCP/PLCL composite did not elicit infection, formation of fibrous capsule or cysts. Finally, native bone tissue at 4 weeks was already able to grow on and in the β-TCP/PLCL composite. The elastic and highly porous β-TCP/PLCL composite is a promising bone substitute because it is osteoconductive and easy-to-use and mould intraoperatively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.22203/eCM.v038a04 | DOI Listing |
Adv Healthc Mater
December 2024
Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
December 2024
Faculty of Veterinary Medicine, Pet Bone Research Group, University of Helsinki, Helsinki, Finland.
Improving bone-graft substitutes and expanding their use in orthopedic and spinal surgery leads to shorter surgical times, fewer complications, and less pain among patients both in human and veterinary medicine. This study compared an elastic porous β-tricalcium phosphate/poly(L-lactide-co-ε-caprolactone) (β-TCP/PLCL) copolymer scaffold (composite scaffold) and a commercially available β-TCP/PLCL bone-graft substitute (chronOS Strip) in a rabbit calvarial defect. A bilateral, 12-mm circular defect was created in the parietal bones of 12 rabbits.
View Article and Find Full Text PDFBiomater Sci
December 2024
The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
The failure to treat deep skin wounds can result in significant complications, and the limitations of current clinical treatments highlight the pressing need for the development of new deep wound healing materials. In this study, a series of three-dimensional structured PLCL/ADM composite aerogels were fabricated by electrospinning and subsequently characterized for their microstructure, compression mechanics, exudate absorption, and hemostatic properties. Additionally, the growth of HSFs and HUVECs, which are involved in wound repair, was observed in the aerogels.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China. Electronic address:
Materials (Basel)
September 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
In this work, we present basic research on developing thermogel carriers containing high amounts of model antibody immunoglobulin G (IgG) with potential use as injectable molecules. The quantities of IgG loaded into the gel were varied to evaluate the possibility of tuning the dose release. The gel materials were based on blends of thermoresponsive and degradable ABA-type block copolymers composed of poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) or poly(lactide-co-caprolactone)-b-poly(ethylene glycol)-b-(lactide-co-caprolactone) (PLCL-PEG-PLCL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!