Most synthetic bone grafts are either hard and brittle ceramics or paste-like materials that differ in applicability from the gold standard autologous bone graft, which restricts their widespread use. Therefore, the aim of the study was to develop an elastic, highly porous and biodegradable β-tricalciumphosphate/poly(L-lactide-co-ε-caprolactone) (β-TCP/PLCL) composite for bone applications using supercritical CO2 foaming. Ability to support osteogenic differentiation was tested in human adipose stem cell (hASC) culture for 21 d. Biocompatibility was evaluated for 24 weeks in a rabbit femur-defect model. Foamed composites had a high ceramic content (50 wt%) and porosity (65-67 %). After 50 % compression, in an aqueous environment at 37 °C, tested samples returned to 95 % of their original height. Hydrolytic degradation of β-TCP/PLCL composite, during the 24-week follow-up, was very similar to that of porous PLCL scaffold both in vitro and in vivo. Osteogenic differentiation of hASCs was demonstrated by alkaline phosphatase activity analysis, alizarin red staining, soluble collagen analysis, immunocytochemical staining and qRT-PCR. In vitro, hASCs formed a pronounced mineralised collagen matrix. A rabbit femur defect model confirmed biocompatibility of the composite. According to histological Masson-Goldner's trichrome staining and micro-computed tomography, β-TCP/PLCL composite did not elicit infection, formation of fibrous capsule or cysts. Finally, native bone tissue at 4 weeks was already able to grow on and in the β-TCP/PLCL composite. The elastic and highly porous β-TCP/PLCL composite is a promising bone substitute because it is osteoconductive and easy-to-use and mould intraoperatively.

Download full-text PDF

Source
http://dx.doi.org/10.22203/eCM.v038a04DOI Listing

Publication Analysis

Top Keywords

β-tcp/plcl composite
20
vitro vivo
8
bone applications
8
elastic highly
8
highly porous
8
osteogenic differentiation
8
β-tcp/plcl
6
bone
6
composite
6
characterisation vitro
4

Similar Publications

Biomaterial-assisted therapeutic strategies enable precise modulation to direct endogenous cellular responses and harness regenerative capabilities for nerve repair. However, achieving effective cellular engagement during nerve remodeling remains challenging. Herein, a novel composite nerve guidance conduit (NGC), the GelMA/PLys@PDA-Fe@PLCL conduit is developed by combining aligned poly(l-lactide-co-caprolactone) (PLCL) nanofibers modified with polydopamine (PDA), ferrous iron (Fe⁺), and polylysine (PLys) with aligned methacrylate-anhydride gelatin (GelMA) hydrogel nanofibers.

View Article and Find Full Text PDF

Long-term comparison of two β-TCP/PLCL composite scaffolds in rabbit calvarial defects.

J Appl Biomater Funct Mater

December 2024

Faculty of Veterinary Medicine, Pet Bone Research Group, University of Helsinki, Helsinki, Finland.

Improving bone-graft substitutes and expanding their use in orthopedic and spinal surgery leads to shorter surgical times, fewer complications, and less pain among patients both in human and veterinary medicine. This study compared an elastic porous β-tricalcium phosphate/poly(L-lactide-co-ε-caprolactone) (β-TCP/PLCL) copolymer scaffold (composite scaffold) and a commercially available β-TCP/PLCL bone-graft substitute (chronOS Strip) in a rabbit calvarial defect. A bilateral, 12-mm circular defect was created in the parietal bones of 12 rabbits.

View Article and Find Full Text PDF

The failure to treat deep skin wounds can result in significant complications, and the limitations of current clinical treatments highlight the pressing need for the development of new deep wound healing materials. In this study, a series of three-dimensional structured PLCL/ADM composite aerogels were fabricated by electrospinning and subsequently characterized for their microstructure, compression mechanics, exudate absorption, and hemostatic properties. Additionally, the growth of HSFs and HUVECs, which are involved in wound repair, was observed in the aerogels.

View Article and Find Full Text PDF

Application of electrospinning and 3D-printing based bilayer composite scaffold in the skull base reconstruction during transnasal surgery.

Colloids Surf B Biointerfaces

January 2025

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China. Electronic address:

Article Synopsis
  • Skull base defects can occur after transsphenoidal endoscopic surgery, often leading to poor outcomes with traditional tissue repair methods.
  • This study developed innovative bilayer composite scaffolds, combining soft tissue nanofiber mats and porous 3D-printed hard tissue scaffolds, to improve repair effectiveness.
  • The scaffolds demonstrated good biocompatibility and promoted tissue regeneration, including a slow-release growth factor that enhanced the proliferation of fibroblasts and aided in the repair of both soft and hard tissue at the skull base.
View Article and Find Full Text PDF

In this work, we present basic research on developing thermogel carriers containing high amounts of model antibody immunoglobulin G (IgG) with potential use as injectable molecules. The quantities of IgG loaded into the gel were varied to evaluate the possibility of tuning the dose release. The gel materials were based on blends of thermoresponsive and degradable ABA-type block copolymers composed of poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) or poly(lactide-co-caprolactone)-b-poly(ethylene glycol)-b-(lactide-co-caprolactone) (PLCL-PEG-PLCL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!