Development of inexpensive and efficient photo- and electro-catalysts is vital for clean energy applications. Electronic and structural properties can be tuned by the introduction of defects to achieve the desirable electrocatalytic activity. Using first-principles molecular dynamics simulations, the structural, dynamical, and electronic properties of 2D borocarbonitride (h-BCN) sheets have been investigated, highlighting how anti-site defects in B and N doped graphene significantly influence the bandgap, and thereby open up new avenues to tune the chemical behavior of the 2D sheets. In the present work, all of the monolayers investigated display direct bandgaps, which reduce from 0.99 eV to 0.24 eV with increasing number of anti-site defects. The present results for the electronic structure and findings for bandgap engineering open up applications of BCN monolayers in optoelectronic devices and solar cells. The influence of the anti-site distribution of B and N atoms on the ultra-high hole/electron mobility and conductivity is discussed based on density functional theory coupled with the Boltzmann transport equation. The BCN defect monolayer is predicted to have carrier mobilities three times higher than that of the pristine sheet. The present results demonstrate that BN doped graphene monolayers are likely to be useful in the next-generation 2D field-effect transistors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr04096j | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China.
Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute de Quimica Computacional i Catálisi, Universitat de Girona, Girona 17003 Spain.
Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.
View Article and Find Full Text PDFMolecules
January 2025
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China.
As a graphene-like material, h-BN has stimulated great research interest recently due to its potential application for next-generation electronic devices. Herein, a systematic theoretical investigation of electronic structures and optical properties of C-doped and Cu-Al co-doped h-BN is carried out by the first-principles calculations. Firstly, two different C-doped h-BN structures for the para-position and ortho-position are constructed.
View Article and Find Full Text PDFNanoscale
December 2024
National Key Laboratory of Aerospace Flight Technology, Beijing Aerospace Technology Research Institute, Beijing 100074, China.
Exploiting efficient and inexpensive electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of great significance for the rapid development of renewable energy technologies. The embedding of single-atom metals into two-dimensional (2D) carbon-based materials as electrocatalysts for fuel cells and metal-air batteries have become a major research focus. Herein, the catalytic properties of the ORR and OER of partial metal atoms embedded in a two-dimensional h-BCN monolayer were systematically investigated on thermodynamic and kinetic scales using density functional theory calculations.
View Article and Find Full Text PDFLangmuir
September 2024
School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!