The angiotensin converting enzyme 2 (ACE2) catalyzes the degradation of Angiotensin II (Ang II) to generate Angiotensin-(1-7), which reduces inflammation and oxidative stress stimulated by Ang II. ACE2 has been shown to be protective in cardiovascular and metabolic diseases including diabetes and its complications. However, the challenge for its clinical application is large-scale production of high-quality ACE2 with sufficient target tissue bioavailability. We developed an expression and delivery system based on the use of probiotic species (LP) to serve as a live vector for oral delivery of human ACE2. We show that codon-optimized ACE2 can be efficiently expressed in LP. Mice treated with the recombinant LP expressing the secreted ACE2 in fusion with the non-toxic subunit B of cholera toxin, which acts as a carrier to facilitate transmucosal transport, showed increased ACE2 activities in serum and tissues. ACE2-LP administration reduced the number of acellular capillaries, blocked retinal ganglion cell loss, and decreased retinal inflammatory cytokine expression in two mouse models of diabetic retinopathy. These results provide proof of concept for feasibility of using engineered probiotic species as live vector for delivery of human ACE2 with enhanced tissue bioavailability for treating diabetic retinopathy, as well as other diabetic complications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661465 | PMC |
http://dx.doi.org/10.1016/j.omtm.2019.06.007 | DOI Listing |
PLoS One
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.
View Article and Find Full Text PDFPeerJ
January 2025
Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Background: The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that may influence expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19.
View Article and Find Full Text PDFCureus
December 2024
Department of Health Sciences, Savitribai Phule Pune University, Pune, IND.
Background: Coronavirus disease 2019 (COVID-19), resulting from the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), affects various bodily systems, including the heart, central nervous system, muscles, and bones, all of which harbor angiotensin-converting enzyme 2 (ACE-2) receptors similar to those in the respiratory system. However, research on the inflammatory response and its impact on systems such as the musculoskeletal one is relatively scarce. Our study aimed to investigate bone and muscle metrics as well as handgrip strength in individuals who recuperated from COVID-19 infection.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Laboratory of Biology and Health, URAC 34, Faculty of Sciences, Ben M'Sik Hassan II University of Casablanca, Casablanca, Morocco.
The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion.
View Article and Find Full Text PDFSci Rep
January 2025
School of Medicine, Alborz University of Medical Science, Karaj, Iran.
The COVID-19 pandemic has resulted in many survivors experiencing post-acute COVID-19 syndrome (PCS) with symptoms including fatigue, breathlessness, and cognitive complaints. E-cigarette use has already been associated with increased susceptibility to COVID-19 because of its effects on ACE2 receptor expression and inflammation, raising concern that it might worsen the long-term outcomes of COVID-19, including PCS. While traditional smoking is associated with a higher risk of PCS, the role of e-cigarettes remains unclear due to conflicting evidence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!