Does the Knowledge of the Local Thickness of Human Ascending Thoracic Aneurysm Walls Improve Their Mechanical Analysis?

Front Bioeng Biotechnol

Mines Saint-Etienne, Centre CIS, INSERM, U 1059 Sainbiose, Univ Lyon, Univ Jean Monnet, Saint-Etienne, France.

Published: July 2019

Ascending thoracic aortic aneurysm (ATAA) ruptures are life threatening phenomena which occur in local weaker regions of the diseased aortic wall. As ATAAs are evolving pathologies, their growth represents a significant local remodeling and degradation of the microstructural architecture and thus their mechanical properties. To address the need for deeper study of ATAAs and their failure, it is required to analyze the mechanical behavior at the sub-millimeter scale by making use of accurate geometrical and kinematical measurements during their deformation. For this purpose, we propose a novel methodology that combined an accurate tool for thickness distribution measurement of the arterial wall, digital image correlation to assess local strain fields and bulge inflation to characterize the physiological and failure response of flat unruptured human ATAA specimens. The analysis of the heterogeneity of the local thickness and local physiological stress and strain was carried out for each investigated subject. At the subject level, our results state the presence of a non-consistent relationship between the local wall thickness and the local physiological strain field and high heterogeneity of the variables. At the inter-subject level, thicknesses were studied in relation to physiological strain and stress and load at rupture. The rupture pressure was correlated with neither the average thickness nor the lowest thickness of the specimens. Our results confirm that intrinsic material strength (hence structure) differs a lot from a subject to another and even within the same subject.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646470PMC
http://dx.doi.org/10.3389/fbioe.2019.00169DOI Listing

Publication Analysis

Top Keywords

local thickness
8
ascending thoracic
8
thickness local
8
local physiological
8
subject subject
8
physiological strain
8
local
7
thickness
6
knowledge local
4
thickness human
4

Similar Publications

Mechanical analysis of cerclage as a treatment for cervical insufficiency.

Arch Gynecol Obstet

January 2025

Department of Obstetrics and Gynecology, Ulsan University Hospital, University of Ulsan, College of Medicine, 25 Daehakbyeongwon-ro, Dong-gu, Ulsan, 44033, South Korea.

Background: The primary treatment for cervical insufficiency is cervical cerclage (mechanical support) with vaginal progesterone (biochemical support). Cerclage is a surgical procedure that mechanically increases the tensile capacity of the cervix. Therefore, it is necessary to analyse the effects of cerclage from a mechanical point of view.

View Article and Find Full Text PDF

Background: Australia has the highest global incidence of keratinocyte cancer. Surgically managing keratinocyte cancers in regional Australia presents geographic and economic challenges, which necessitate cost-effective resource allocation. Previous work has outlined the cost benefit for outpatient day surgical excision of head and neck skin lesions that can be closed primarily.

View Article and Find Full Text PDF

Endometrial cancer is the most prevalent gynecologic cancer in the United States and has rising incidence and mortality. Endometrial intraepithelial neoplasia or atypical endometrial hyperplasia (EIN-AEH), a precancerous neoplasm, is surgically managed with hysterectomy in patients who have completed childbearing because of risk of progression to cancer. Concurrent endometrial carcinoma (EC) is also present on hysterectomy specimens in up to 50% of cases.

View Article and Find Full Text PDF

The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate's focal length and the InP substrate's thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher-up to 24.

View Article and Find Full Text PDF

Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!