Seismocardiography (SCG) is a measure of chest vibration associated with heartbeats. While skin soft electronic tattoos (e-tattoos) have been widely reported for electrocardiogram (ECG) sensing, wearable SCG sensors are still based on either rigid accelerometers or non-stretchable piezoelectric membranes. This work reports an ultrathin and stretchable SCG sensing e-tattoo based on the filamentary serpentine mesh of 28-µm-thick piezoelectric polymer, polyvinylidene fluoride (PVDF). 3D digital image correlation (DIC) is used to map chest vibration to identify the best location to mount the e-tattoo and to investigate the effects of substrate stiffness. As piezoelectric sensors easily suffer from motion artifacts, motion artifacts are effectively reduced by performing subtraction between a pair of identical SCG tattoos placed adjacent to each other. Integrating the soft SCG sensor with a pair of soft gold electrodes on a single e-tattoo platform forms a soft electro-mechano-acoustic cardiovascular (EMAC) sensing tattoo, which can perform synchronous ECG and SCG measurements and extract various cardiac time intervals including systolic time interval (STI). Using the EMAC tattoo, strong correlations between STI and the systolic/diastolic blood pressures, are found, which may provide a simple way to estimate blood pressure continuously and noninvasively using one chest-mounted e-tattoo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662084PMC
http://dx.doi.org/10.1002/advs.201900290DOI Listing

Publication Analysis

Top Keywords

ultrathin stretchable
8
cardiac time
8
time intervals
8
chest vibration
8
motion artifacts
8
scg
6
e-tattoo
5
chest-laminated ultrathin
4
stretchable e-tattoo
4
e-tattoo measurement
4

Similar Publications

Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.

View Article and Find Full Text PDF

One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:

It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.

View Article and Find Full Text PDF

Numerous studies have focused on graphene owing to its potential as a next-generation electronic material, considering its high conductivity, transparency, superior mechanical stiffness, and flexibility. However, cost-effective mass production of graphene-based electronics based on existing fabrication methods, such as graphene transfer and metal formation, remains a challenge. This study proposes a simple and efficient method for creating electrical contacts with graphene.

View Article and Find Full Text PDF

Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.

View Article and Find Full Text PDF

Stretchable and adhesive bilayers for electrical interfacing.

Mater Horiz

January 2025

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Article Synopsis
  • Integrated stretchable devices face issues with electrical performance due to debonding at connections between soft and rigid modules under stress.
  • A new conductive and adhesive bilayer interface connects these modules effectively, using a combination of a SEBS elastomer layer and a SEBS-liquid metal composite layer.
  • This innovative interface allows for impressive strain capabilities and maintains high electrical conductivity (3.7 × 10 S m) even when stretched, paving the way for practical applications in wearable and implantable bioelectronics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!