The synthesis of a diseleno[3,2-:2',3'-]selenophene (DSS) composed of three fused selenophenes is reported and it is used as a building block for the preparation of a high hole mobility conjugated polymer (PDSSTV). The polymer demonstrates strong intermolecular interactions even in solution, despite steric repulsion between the large Se atom in DSS and adjacent (C)-H atoms which leads to a partially twisted confirmation PDSSTV. Nevertheless, 2D grazing incidence X-ray diffraction (2D-GIXD) analysis reveals that the polymer tends to align in a highly ordered edge-on orientation after thermal annealing. The polymer demonstrates promising performance in a field-effect transistor device with saturated hole mobility up to 2 cm V s obtained under relatively low gate voltages of -30 V. The ultilization of a Se-containing fused aromatic system, therefore, appears to be a promising avenue for the development of high-performance conjugated polymers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662335 | PMC |
http://dx.doi.org/10.1002/advs.201900245 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fuzhou University, Chemistry, 523 Gongye Rd, Gulou, 350000, Fuzhou, CHINA.
Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Julius-Maximilians-Universitat Wurzburg, Institute for Pharmacy and Chemistry, Am Hubland, 97074, Würzbrug, GERMANY.
Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" 15N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:
Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
Zwitterionic polymers exhibit strong hydration, high biocompatibility, and antifouling properties. Dendrimers are regularly branched polymers, which are used in the drug delivery system (DDS). In this study, we synthesized zwitterionic monomer- and polymer-conjugated dendrimers as a biocompatible nanoparticle to investigate the relation between the hydration property and biodistribution.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
Atom transfer radical polymerization (ATRP) is a leading method for creating polymers with precise control over molecular weight, yet its reliance on metal catalysts limits its application in metal-sensitive and environmental contexts. Addressing these limitations, we have developed a recyclable, biocompatible, robust, and tunable ATRP catalyst composed of a protein-polymer-copper conjugate, synthesized by polymerizing an -proline-based monomer onto bovine serum albumin and complexing with Cu(II). The use of this conjugate catalyst maintains ATRP's precision while ensuring biocompatibility with both and HEK 293 cells, and its high molecular weight allows for easy recycling through dialysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!