The uranium level in seawater is ≈1000 times as high as terrestrial ores and can provide potential near-infinite fuel for the nuclear energy industry. However, it is still a significant challenge to develop high-efficiency and low-cost adsorbents for massively extracting uranium from seawater. Herein, a simple and fast method through low-energy consumption sunlight polymerization to direct fabrication of a poly(amidoxime) (PAO) hydrogel membrane, which exhibits high uranium adsorption capacity, is reported. This PAO hydrogel owns semi-interpenetrating structure and a hydrophilic poly(acrylamide) 3D network of hydrogel which can disperse and fix PAOs well. As a result, the amidoxime groups of PAOs exhibit an outstanding uranium adsorption efficiency (718 ± 16.6 and 1279 ± 14.5 mg g of / in 8 and 32 ppm uranium-spiked seawater, respectively) among reported hydrogel-based adsorbents. Most importantly, U-uptake capacity of this hydrogel can achieve 4.87 ± 0.38 mg g of / just after four weeks within natural seawater. Furthermore, this hydrogel can be massively produced through low-energy consumption and environmentally-friendly sunlight polymerization. This work will provide a high-efficiency and low-cost adsorbent for massive uranium extraction from seawater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662065 | PMC |
http://dx.doi.org/10.1002/advs.201900085 | DOI Listing |
Langmuir
December 2024
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
To address the limitations of carbon nitride in photocatalysis, we propose constructing a three-dimensional interwoven SiC/g-CN composite structure. Utilizing the strong microwave-thermal conversion characteristics of SiC whiskers, localized "hot spots" are generated, which induce rapid thermal gradients, promoting rapid polymerization of urea and in situ formation of the interwoven network. This unique structure strengthens the interaction between these two components, creates multiple electron transport pathways, enhances CO adsorption, and effectively improves charge separation while reducing photogenerated carrier recombination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Artificial photosynthesis of hydrogen peroxide (HO) from ambient air, water, and sunlight has attracted considerable attention recently. Despite being extremely challenging to synthesis, sp carbon-conjugated covalent organic frameworks (COFs) can be powerful and efficient materials for the photosynthesis of HO due to desirable properties. Herein, we report the designed synthesis of an sp carbon-conjugated COF, BTD-spc-COF, from benzothiadiazole and triazine units with high crystallinity and ultralarge mesopores (∼4 nm).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Sun Yat-Sen University, PCFM and GDHPPC labs, School of Materials Science and Engineering, No. 135, Xinggangxi Road, 510275, Guangzhou, CHINA.
The development of organic afterglow materials has garnered significant attention due to their diverse applications in smart devices, optoelectronics, and bioimaging. However, polymeric afterglow materials often suffer from short emission lifetimes, typically ranging from milliseconds to seconds, posing a significant challenge for achieving hour-long afterglow (HLA) polymers. This study presents the successful fabrication of transparent HLA polymers by introducing electron donor/acceptor exciplexes.
View Article and Find Full Text PDFInt Ophthalmol
December 2024
Department of Ophthalmology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey.
Purpose: To assess the safety and the efficacy of the "Sub-400 corneal cross-linking (CXL) protocol" for progressive keratoconus (KC) in ultrathin corneas.
Methods: The study included thirty four patients with progressive KC, who underwent CXL using the "Sub-400" protocol due to intraoperative thinnest corneal pachymetry ranging from 295 to 398 μm after epithelial removal. After the epithelium was removed, the following ultraviolet A irradiation was applied at a fluence of 3 mW/cm and the duration was adjusted based on the specific corneal stromal thickness.
Small
December 2024
Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France.
Currently, there are only few reports on water-soluble photoinitiating systems. In this study, a highly water-soluble organic dye i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!