A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MIG1 Glucose Repression in Metabolic Processes of Genetics to Metabolic Engineering. | LitMetric

MIG1 Glucose Repression in Metabolic Processes of Genetics to Metabolic Engineering.

Avicenna J Med Biotechnol

Institute of Chemical Biology, Faculty of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia.

Published: January 2019

Background: Although has several industrial applications, there are still fundamental problems associated with sequential use of carbon sources. As such, glucose repression effect can direct metabolism of yeast to preferably anaerobic conditions. This leads to higher ethanol production and less efficient production of recombinant products. The general glucose repression system is constituted by , TUP1 and SSN6 factors. The role of is known in glucose repression but the evaluation of effects on aerobic/anaerobic metabolism by deletion of and constructing an optimal strain brand remains unclear and an objective to be explored.

Methods: To find the impact of in induction of glucose-repression, the Mig1 disruptant strain (Δ) was produced for comparing with its congenic wild-type strain (2805). The analysis approached for changes in the rate of glucose consumption, biomass yield, cell protein contents, ethanol and intermediate metabolites production. The disruptant strain exhibited 25% glucose utilization, 12% biomass growth rate and 22% protein content over the wild type. The shift to respiratory pathway has been demonstrated by 122.86 and 40% increase of glycerol and pyruvate production, respectively as oxidative metabolites, while the reduction of fermentative metabolites such as acetate 35.48 and ethanol 24%.

Results: Results suggest that Δ compared to the wild-type strain can significantly present less effects of glucose repression.

Conclusion: The constructed strain has more efficient growth in aerobic cultivations and it can be a potential host for biotechnological recombinant yields and industrial interests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626512PMC

Publication Analysis

Top Keywords

glucose repression
16
disruptant strain
8
wild-type strain
8
glucose
6
strain
6
mig1 glucose
4
repression
4
repression metabolic
4
metabolic processes
4
processes genetics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!