Sulphate-reducing bacteria (SRB) are studied across a range of scientific fields due to their characteristic ability to metabolise sulphate and produce hydrogen sulphide, which can lead to significant consequences for human activities. Importantly, they are members of the human gastrointestinal microbial population, contributing to the metabolism of dietary and host secreted molecules found in this environment. The role of the microbiota in host digestion is well studied, but the full role of SRB in this process has not been established. Moreover, from a human health perspective, SRB have been implicated in a number of functional gastrointestinal disorders such as Irritable Bowel Syndrome and the development of colorectal cancer. To assist with the study of SRB, we present a mathematical model for the growth and metabolism of the well-studied SRB, in a closed system. Previous attempts to model SRB have resulted in complex or highly specific models that are not easily adapted to the study of SRB in different environments, such as the gastrointestinal tract. We propose a simpler, Monod-based model that allows for easy alteration of both key parameter values and the governing equations to enable model adaptation. To prevent any incorrect assumptions about the nature of SRB metabolic pathways, we structure the model to consider only the concentrations of initial and final metabolites in a pathway, which circumvents the current uncertainty around hydrogen cycling by SRB. We parameterise our model using experiments with varied initial substrate conditions, obtaining parameter values that compare well with experimental estimates in the literature. We then validate our model against four independent experiments involving with further variations to substrate availability. Further use of the model will be possible in a number of settings, notably as part of larger models studying the metabolic interactions between SRB and other hydrogenotrophic microbes in the human gastrointestinal tract and how this relates to functional disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6653664 | PMC |
http://dx.doi.org/10.3389/fmicb.2019.01652 | DOI Listing |
Nephrogenic adenoma of the urinary bladder is a rare, benign lesion associated with prior inflammation or irritation of the urothelium. Although typically benign, nephrogenic adenoma can present diagnostic challenges due to its potential to mimic malignant tumors of the urinary tract. In this report, we present a case of an elderly woman with a history of recurrent urinary tract infections and bladder stone surgery who developed nephrogenic adenoma.
View Article and Find Full Text PDFMar Environ Res
December 2024
L3MA UR4_1 UFR STE Universite des Antilles, Campus de Schoelcher, Schoelcher, 97275, France. Electronic address:
Since 2011, massive strandings of Sargassum (brown alga) have significantly affected Caribbean islands causing major health, environmental and economic problems. Amongst them, the degradation of algae releases corrosive gases, hydrogen sulphide (HS) and ammonia (NH) which causes an accelerated corrosion of the metallic structures of these coastal areas. The aim of this study was to quantify the impact of Sargassum strandings on the corrosion of three types of steels (DC01 carbon steel, 304L and 316L stainless steels) immersed for up to 120 days at various sites in Martinique which were gradually impacted by Sargassum.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
Virtual ligand libraries for ligand discovery have recently increased 10,000-fold. Whether this has improved hit rates and potencies has not been directly tested. Meanwhile, typically only dozens of docking hits are assayed, clouding hit-rate interpretation.
View Article and Find Full Text PDFSci Rep
January 2025
Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt.
Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Marine Corrosion and Protection Team, School of Chemical Engineering and Technology (Zhuhai 519082), Sun Yat-sen University, China. Electronic address:
This study investigates the corrosion of 90/10 copper-nickel (Cu-Ni) alloy caused by sulfate-reducing bacteria (SRB) in the presence of aluminum anodes, with particular emphasis on the role of electron supply in microbial corrosion and the resulting local corrosion failures. The study reveals that the electron supply from the anode supports SRB growth on the Cu-Ni alloy through an "Electrons-siphoning" mechanism. However, the supply is insufficient to sustain the SRB population, resulting in ineffective cathodic protection (i = 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!