AI Article Synopsis

  • The study examined airborne bacterial communities in Tokyo, analyzing their dynamics in relation to local meteorological conditions and the long-range transport of microbes.
  • Samples were collected over 48 to 72 hours and analyzed for microbial diversity using next generation sequencing, showing that while source regions shifted from oceanic to continental origins, the community composition remained stable.
  • Findings indicated that local factors like relative humidity and wind speed significantly impacted microbial diversity, with soil and bay seawater identified as major local sources, particularly influenced by humidity and soil moisture levels.

Article Abstract

In order to study airborne bacterial community dynamics over Tokyo, including fine-scale correlations between airborne microorganisms and meteorological conditions, and the influence of local versus long-range transport of microbes, air samples were collected on filters for periods ranging from 48 to 72 h. The diversity of the microbial community was assessed by next generation sequencing. Predicted source regions of airborne particles, from back trajectory analyses, changed abruptly from the Pacific Ocean to the Eurasian Continent in the beginning of October. However, the microbial community composition and the alpha and beta diversities were not affected by this shift in meteorological regime, suggesting that long-range transport from oceanic or continental sources was not the principal determinant controlling the local airborne microbiome. By contrast, we found a significant correlation between the local meteorology, especially relative humidity and wind speed, and both alpha diversity and beta diversity. Among four potential local source categories (soil, bay seawater, river, and pond), bay seawater and soil were identified as constant and predominant sources. Statistical analyses point toward humidity as the most influential meteorological factor, most likely because it is correlated with soil moisture and hence negatively correlated with the dispersal of particles from the land surface. In this study, we have demonstrated the benefits of fine-scale temporal analyses for understanding the sources and relationships with the meteorology of Tokyo's "aerobiome."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6646838PMC
http://dx.doi.org/10.3389/fmicb.2019.01572DOI Listing

Publication Analysis

Top Keywords

airborne bacterial
8
influence local
8
local meteorology
8
long-range transport
8
microbial community
8
bay seawater
8
airborne
5
local
5
seasonal changes
4
changes airborne
4

Similar Publications

Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria.

View Article and Find Full Text PDF

A green and cost-effective sonochemical synthetic method was followed for coating silver-modified copper oxide (Ag-CuO) nanoparticles (NPs) on disposable surgical mask. The NP-coated masks were systematically characterized using XRD and FT-IR for understanding the structural and surface functionalities. In addition, the field emission scanning electron microscopy (FE-SEM) analysis showed the homogeneous coating of Ag-CuO NPs over the mask fibers.

View Article and Find Full Text PDF

: Airborne exogenous antigen inhalation can induce neutrophil infiltration of the airways, while eosinophils migrate to the airways in allergic airway inflammation. During a bacterial infection, Th2-associated cytokine IL-4, by binding to the IL-4 receptor (IL-4R), can suppress neutrophil recruitment to the site of inflammation. In the present study, we estimated whether the IL-4-dependent suppression of neutrophil recruitment contributed to the development of an immune response in asthma.

View Article and Find Full Text PDF

Efficacy of Antimicrobial Dry Fog in Improving the Environmental Microbial Burden in an Inpatient Ward.

Antibiotics (Basel)

December 2024

Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72 Bratislava, Slovakia, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia.

In healthcare environments with high microbial loads, effective infection control measures are critical for reducing airborne and surface contamination. One of the novel modalities in the achievement of these goals is the use of antimicrobial mists, such as droplets, in the form of dry fog. Although the usage of dry fog in the disinfection of contained healthcare microenvironments is well known, the effect of such a system in terms of a meaningful reduction in the microbial burden in an open inpatient ward is unclear.

View Article and Find Full Text PDF

Bioaerosols significantly influence air quality and human health. This study investigated the diversity, structure, and interaction of bacterial communities in particulate matter (PM) across four seasons in Xi'an. The results revealed that operational taxonomic units (OTUs) were the highest in autumn, reaching levels comparable to those in winter, but were 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!