We have measured the X-ray absorption spectra of Fe in photosystem I (PS I) preparations from spinach and a thermophilic cyanobacterium, Synechococcus sp., to characterize structures of the Fe complexes that function as electron acceptors in PS I. These acceptors include centers A and B, which are probably typical [4Fe-4S] ferredoxins, and X. The structure of X is not known, but its electron paramagnetic resonance (EPR) spectrum has generated the suggestions that it is either a [2Fe-2S] or [4Fe-4S] ferredoxin or an Fe-quinone species. The iron X-ray absorption K-edge and iron extended X-ray absorption fine structure (EXAFS) spectra reveal that essentially all of the 11-14 Fe atoms present in the reaction center are present in the form of Fe-S centers and that not more than 1 atom out of 12 could be octahedral or oxygen-coordinated Fe. This suggests that, besides A and B, additional Fe-S clusters are present which are likely to be X. Our EXAFS spectra cannot be simulated adequately by a mixture of [4Fe-4S] ferredoxins with typical bond lengths and disorder parameters because the amplitude of Fe backscattering is small; however, excellent simulations of the data are consistent with a mixture of [2Fe-2S] ferredoxins and [4Fe-4S] ferredoxins, or with unusually distorted [4Fe-4S] clusters. We presume that the [2Fe-2S] or distorted [4Fe-4S] centers are X. The X-ray absorption spectra of PS I preparations from Synechococcus and spinach are essentially indistinguishable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00411a018 | DOI Listing |
Nat Commun
January 2025
School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO supported Cu single-atom catalyst with a four-coordinated Cu-O structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:
High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Institute of Chemistry, Military University of Technology, Kaliskiego 2, PL-00908 Warsaw, Poland.
Molecular arrangement in the chiral smectic phases of the glassforming (S)-4'-(1-methylheptylcarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]benzoate is investigated by X-ray diffraction. An increased correlation length of the positional short-range order in the supercooled state agrees with the previous assumption of the hexatic smectic phase. However, the registered X-ray diffraction patterns are not typical for the hexatic phases.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jain University - Ramanagara Campus, Centre for Nano and Material Sciences, Jakkasandra Post Kanakapura Taluk, Ramanagara-562112, Bangalore, 562112, Bangalore, INDIA.
The development of a metallic copper-based catalyst system remains a significant challenge. Herein, we report the synthesis of highly stable, active, and reusable Cu0 catalyst for the carboboration of alkynes using carbon electrophiles and bis(pinacolato)diboron (B2pin2) as chemical feedstocks to afford di- and trisubstituted vinylboronate esters in a regio- and stereoselective manner with appreciable turnover number (TON) of up to 2535 under mild reaction conditions. This three-component coupling reaction works well with a variety of substituted electrophiles and alkynes with broad functional group tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!