Human listeners must identify and orient themselves to auditory objects and events in their environment. What acoustic features support a listener's ability to differentiate the great variety of natural sounds they might encounter? Studies of auditory object perception typically examine identification (and confusion) responses or dissimilarity ratings between pairs of objects and events. However, the majority of this prior work has been conducted within single categories of sound. This separation has precluded a broader understanding of the general acoustic attributes that govern auditory object and event perception within and across different behaviorally relevant sound classes. The present experiments take a broader approach by examining multiple categories of sound relative to one another. This approach bridges critical gaps in the literature and allows us to identify (and assess the relative importance of) features that are useful for distinguishing sounds within, between and across behaviorally relevant sound categories. To do this, we conducted behavioral sound identification (Experiment 1) and dissimilarity rating (Experiment 2) studies using a broad set of stimuli that leveraged the acoustic variability within and between different sound categories via a diverse set of 36 sound tokens (12 utterances from different speakers, 12 instrument timbres, and 12 everyday objects from a typical human environment). Multidimensional scaling solutions as well as analyses of item-pair-level responses as a function of different acoustic qualities were used to understand what acoustic features informed participants' responses. In addition to the spectral and temporal envelope qualities noted in previous work, listeners' dissimilarity ratings were associated with spectrotemporal variability and aperiodicity. Subsets of these features (along with fundamental frequency variability) were also useful for making specific within or between sound category judgments. Dissimilarity ratings largely paralleled sound identification performance, however the results of these tasks did not completely mirror one another. In addition, musical training was related to improved sound identification performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650748 | PMC |
http://dx.doi.org/10.3389/fpsyg.2019.01594 | DOI Listing |
Open Mind (Camb)
January 2025
Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy.
When objects are grouped in space, humans can estimate numerosity more precisely than when they are randomly scattered. This phenomenon, called groupitizing, is thought to arise from the interplay of two components: the subitizing system which identifies both the number of subgroups and of items within each group, and the possibility to perform basic arithmetic operations on the subitized groups. Here we directly investigate the relative role of these two components in groupitizing via an interference (dual task) paradigm.
View Article and Find Full Text PDFJ Exp Psychol Gen
January 2025
Department of Experimental Psychology, Helmholtz Institute, Utrecht University.
Predicting the location of moving objects in noisy environments is essential to everyday behavior, like when participating in traffic. Although many objects provide multisensory information, it remains unknown how humans use multisensory information to localize moving objects, and how this depends on expected sensory interference (e.g.
View Article and Find Full Text PDFEar Hear
January 2025
Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
Objectives: Occupational hearing loss is a significant problem worldwide despite the fact that it can be mitigated by the wearing of hearing protection devices (HPDs). When surveyed, workers frequently report that worsened work performance while wearing HPDs is one reason why they choose not to wear them. However, there have been few studies to supplement these subjective reports with objective measures.
View Article and Find Full Text PDFElife
January 2025
Department of Psychology, University of York, North Yorkshire, United Kingdom.
Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories.
View Article and Find Full Text PDFJ Neurosci
January 2025
Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA
In everyday hearing, listeners face the challenge of understanding behaviorally relevant foreground stimuli (speech, vocalizations) in complex backgrounds (environmental, mechanical noise). Prior studies have shown that high-order areas of human auditory cortex (AC) pre-attentively form an enhanced representation of foreground stimuli in the presence of background noise. This enhancement requires identifying and grouping the features that comprise the background so they can be removed from the foreground representation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!