Axonal damage is recognized as an important pathological feature in the chronic progressive neurological disorder multiple sclerosis (MS). Promoting axonal regeneration is a critical strategy for the treatment of MS. Our clinical and experimental studies have shown that the Bu Shen Yi Sui formula (BSYS) promotes axonal regeneration in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, but the exact mechanism has not been thoroughly elucidated to date. In this study, we investigated the effects of BSYS and its two decomposed formulas-the Bu Shen formula (BS) and the Hua Tan Huo Xue formula (HTHX)-on brain-derived neurotrophic factor (BDNF)/TrkB and related signaling pathways to explore the mechanism by which axonal regeneration is promoted and . Damaged SH-SY5Y cells incubated with low serum were treated with BSYS-, BS-, and HTHX-containing serum, and EAE mice induced by the myelin oligodendrocyte glycoprotein (MOG) peptide were treated with BSYS. The results showed that the BSYS-containing serum markedly increased cell viability and increased the levels of growth associated protein (GAP)-43, phosphorylated (p)-cAMP-response element binding protein (CREB), BDNF, TrkB, and p-PI3K. The BS and HTHX treatments also induced the protein expression of GAP-43 and p-extracellular signal-regulated kinase (ERK) in the cells. Furthermore, the effects of BSYS on cell viability, GAP-43, p-CREB, and neurite outgrowth were clearly inhibited by LY294002, a specific antagonist of the PI3K signaling pathways. The addition of U0126 and U73122, antagonists of the ERK and PLCγ pathway, respectively, significantly inhibited cell viability and GAP-43 protein expression. Moreover, BSYS treatment significantly increased the expression of the 68-, 160-, and 200-kDa neurofilaments (NFs) of proteins and the BDNF, TrkB, PI3K, and Akt mRNA and proteins in the brain or spinal cord of mice at different stages. These results indicated that BSYS promotes nerve regeneration, and its mechanism is mainly related to the upregulation of the BDNF/TrkB and PI3K/Akt signaling pathways. BS and HTHX also promoted nerve regeneration, and this effect involved the ERK pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650751 | PMC |
http://dx.doi.org/10.3389/fphar.2019.00796 | DOI Listing |
Int J Biol Sci
January 2025
Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130000, Jilin, China.
Glaucoma is a neurodegenerative disorder marked by the loss of retinal ganglion cells (RGCs) and axonal degeneration, resulting in irreversible vision impairment. While intraocular pressure (IOP) is presently acknowledged as the sole modifiable risk factor, the sensitivity of RGCs to IOP varies among individuals. Consequently, progressive vision loss may ensue even when IOP is effectively managed.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
September 2024
Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
Oligodendrocytes are the myelinating cells of the central nervous system. Brain injury and neurodegenerative disease often lead to oligodendrocyte death and subsequent demyelination-related pathological changes, resulting in neurological defects and cognitive impairment (Spaas et al., 2021; Zhang J et al.
View Article and Find Full Text PDFLife Sci
December 2024
Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China. Electronic address:
Aims: This study explores the potential of neuromodulation, specifically transcranial alternating current stimulation (tACS), as a promising rehabilitative therapy in spinal cord injury (SCI).
Main Methods: By meticulously optimizing treatment parameters and durations, our objective was to enhance nerve regeneration and facilitate functional recovery. To assess the efficacy of tACS, our experiments used the rat T10 SCI model.
PLoS One
December 2024
Faculty of Medicine Universitas Indonesia, Department of Orthopaedics & Traumatology, Dr Cipto Mangunkusumo National Central Hospital, Jakarta, Indonesia.
Background And Purpose: Current treatments for peripheral nerve defects are suboptimal. Mesenchymal stem cell (MSC) implantation holds promise, with studies indicating their efficacy through the secretome. This study aims to assess the secretome's potency in regenerating peripheral nerve defects.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!