Here, the emerging data on DNA G-quadruplexes (G4s) as epigenetic modulators are reviewed and integrated. This concept has appeared and evolved substantially in recent years. First, persistent G4s (e.g., those stabilized by exogenous ligands) were linked to the loss of the histone code. More recently, transient G4s (i.e., those formed upon replication or transcription and unfolded rapidly by helicases) were implicated in CpG island methylation maintenance and de novo CpG methylation control. The most recent data indicate that there are direct interactions between G4s and chromatin remodeling factors. Finally, multiple findings support the indirect participation of G4s in chromatin reshaping via interactions with remodeling-related transcription factors (TFs) or damage responders. Here, the links between the above processes are analyzed; also, how further elucidation of these processes may stimulate the progress of epigenetic therapy is discussed, and the remaining open questions are highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.201900091 | DOI Listing |
Biomolecules
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
G-quadruplex (G4) DNAzymes with peroxidase activities hold potential for applications in biosensing. While these nanozymes are easy to assemble, they are not as efficient as natural peroxidase enzymes. Several approaches are being used to better understand the structural basis of their reaction mechanisms, with a view to designing constructs with improved catalytic activities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Max Perutz Labs, Vienna Biocenter Campus, Vienna 1030, Austria.
RNA G-quadruplexes (rG4s), the four-stranded structures formed by guanine-rich RNA sequences, are recognized by regions in RNA-binding proteins (RBPs) that are enriched in arginine-glycine repeats (RGG motifs). Importantly, arginine and glycine are encoded by guanine-rich codons, suggesting that some RGG motifs may both be encoded by and interact with rG4s in autogenous messenger RNAs (mRNAs). By analyzing transcriptome-wide rG4 datasets, we show that hundreds of RGG motifs in humans are at least partly encoded by rG4s, with an increased incidence for longer RGG motifs (~10 or more residues).
View Article and Find Full Text PDFChembiochem
January 2025
Bose Institute - Centenary Campus, Biophysics, P-1/12 CIT Scheme VIIM, Kankurgachi, Centenary Campus, 700054, KOLKATA, INDIA.
The Rous sarcoma virus (RSV) is an onco-retrovirus that infects avian species such as the chicken (Gallus gallus). RSV is the first oncovirus to be described, and the oncogenic activity of this virus is related to the expression of a tyrosine kinase that induces carcinogenic transformation. Interestingly, we have noted that the RSV genome contains various potential G4-forming sequences.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Nucleic acids are highly charged, and electrical forces are involved heavily in how our DNA is compacted and packaged into such a small space, how chromosomes are formed, and how DNA damage is repaired. In addition, electrical forces are crucial to the formation of non-canonical DNA structures called G-Quadruplexes which play multiple biological roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!