The upper atmosphere of Uranus has been observed to be slowly cooling between 1993 and 2011. New analysis of near-infrared observations of emission from H obtained between 2012 and 2018 reveals that this cooling trend has continued, showing that the upper atmosphere has cooled for 27 years, longer than the length of a nominal season of 21 years. The new observations have offered greater spatial resolution and higher sensitivity than previous ones, enabling the characterization of the H intensity as a function of local time. These profiles peak between 13 and 15 h local time, later than models suggest. The NASA Infrared Telescope Facility iSHELL instrument also provides the detection of a bright H signal on 16 October 2016, rotating into view from the dawn sector. This feature is consistent with an auroral signal, but is the only of its kind present in this comprehensive dataset. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H, H and beyond'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710888PMC
http://dx.doi.org/10.1098/rsta.2018.0408DOI Listing

Publication Analysis

Top Keywords

upper atmosphere
8
local time
8
ionosphere uranus
4
uranus decades-long
4
decades-long cooling
4
cooling local-time
4
local-time morphology
4
morphology upper
4
atmosphere uranus
4
uranus observed
4

Similar Publications

Introduction: As airway liquid is cleared into lung interstitial tissue after birth, the chest wall must expand to accommodate this liquid and the incoming air. We examined the effect of applying external positive and negative pressures to the chest wall on lung aeration in near-term rabbit kittens at risk of developing respiratory distress.

Methods: Rabbit kittens (30 days; term ∼31 days) were randomised into and groups.

View Article and Find Full Text PDF

Climate change is a spatial and temporarily non-uniform phenomenon that requires understanding its evolution to better evaluate its potential societal and economic impact. The value added of this paper lies in introducing a quantitative methodology grounded in the trend analysis of temperature distribution quantiles to analyze climate change heterogeneity (CCH). By converting these quantiles into time series objects, the methodology empowers the definition and measurement of various relevant concepts in climate change analysis (warming, warming typology, warming amplification and warming acceleration) in a straightforward and robust testable linear regression format.

View Article and Find Full Text PDF

Crucial role of subsurface ocean variability in tropical cyclone genesis.

Nat Commun

January 2025

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.

The upper ocean provides thermal energy to tropical cyclones. However, the impacts of the subsurface ocean on tropical cyclogenesis have been largely overlooked. Here, we show that the subsurface variabilities associated with the variation in the 26 °C isothermal depth have pronounced impacts on tropical cyclogenesis over global oceans.

View Article and Find Full Text PDF

Microplastics (MPs) have become a notable concern and are released into the environment through the disposal or fragmentation of large plastics. Rivers have been the major pathways for MPs present in the oceans, which significantly affects the marine environment. In the current study, water samples were collected from the upper stream and downstream of Damanganga and Tapi rivers across different sites in the state of Gujarat, India for exploration of MPs contamination.

View Article and Find Full Text PDF

Human seasonal coronaviruses (hCoVs) are a group of viruses that affect the upper respiratory tract. While seasonal patterns and the annual variability of predominant hCoV species are well-documented, their genetic and species diversity in St. Petersburg and across Russia remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!