Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Engineered nanoparticles of TiO (TiO-NPs) are used in the industry for a great number of applications. After their usage, the particles end up in aquatic environments, contaminating supply waters and watercourses. Bench-scale studies report removal of TiO-NPs (450 nm, the mean volumetric diameter) by flocculation followed by settling or by dissolved air flotation (4 bar saturation pressure and 30% recycling ratio). Floc formation was conducted after heterocoagulation with iron hydroxide (30-40 mg LFe and gelatinized corn starch (10-20 mgL) as flocculant, at pH 7. Particle size distribution and zeta potential, removal efficiencies as a function of time and microphotography of flocs were analyzed. Mechanisms involve ferric hydroxide precipitation, heterocoagulation with the nanoparticles and flocculation of the loaded carrier precipitates with gelatinized starch. Best results showed removals between 95-100% of TiO-NPs, either by settling or flotation after 5 min. Clear treated waters with low turbidity < 3 nephelometric turbidity units (NTU) and TiO-NPs concentrations <1 mg L were obtained. A practical advantage in DAF was the higher solids content (1.9% w/w) of the sludge, when compared to settling (0.7% w/w). This would facilitate the sludge dewatering and disposal, but DAF has the disadvantage of the poor efficiency at high concentration of the nanoparticles of titanium oxide (>100 mg L). Conversely, the removal by settling of the flocs increased at high dosages. It is believed that both processes are sustainable in terms of reagents and the removal efficiencies of TiO nanoparticles from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2019.1650123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!