Backgrounds: Type I interferonopathy is a group of autoinflammatory disorders associated with prominent enhanced type I interferon signaling. The mechanisms are complex, and the clinical phenotypes are diverse. This review briefly summarized the recent progresses of type I interferonopathy focusing on the clinical and molecular features, pathogeneses, diagnoses and potential therapies.
Data Sources: Original research articles and literature reviews published in PubMed-indexed journals.
Results: Type I interferonopathies include Aicardi-Goutières syndrome, spondyloenchondro-dysplasia with immune dysregulation, stimulator of interferon genes-associated vasculopathy with onset in infancy, X-linked reticulate pigmentary disorder, ubiquitin-specific peptidase 18 deficiency, chronic atypical neutrophilic dermatitis with lipodystrophy, and Singleton-Merten syndrome originally. Other disorders including interferon-stimulated gene 15 deficiency and DNAse II deficiency are believed to be interferonopathies as well. Intracranial calcification, skin vasculopathy, interstitial lung disease, failure to thrive, skeletal development problems and autoimmune features are common. Abnormal responses to nucleic acid stimuli and defective regulation of protein degradation are main mechanisms in disease pathogenesis. First generation Janus kinase inhibitors including baricitinib, tofacitinib and ruxolitinib are useful for disease control. Reverse transcriptase inhibitors seem to be another option for Aicardi-Goutières syndrome.
Conclusions: Tremendous progress has been made for the discovery of type I interferonopathies and responsible genes. Janus kinase inhibitors and other agents have potential therapeutic roles. Future basic, translational and clinical studies towards disease monitoring and powerful therapies are warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12519-019-00273-z | DOI Listing |
Eur J Pediatr
January 2025
Pediatric Hematology and Oncology, Liv Hospital, Gaziantep, Turkey.
Unlabelled: Spondyloenchondrodysplasia (SPENCD) is a rare genetic disorder characterized with skeletal dysplasia, immune dysregulation, and neurological impairment. Patients diagnosed with SPENCD at a single pediatric hematology center were included in the study. The patients' clinical characteristics, symptoms at presentation, imaging and laboratory results, and genetic analysis results were collected retrospectively from their files.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.
Aicardi-Goutières syndrome (AGS) is a rare monogenic type I interferonopathy. Janus kinase (JAK) inhibition has emerged as a potential treatment for AGS. RNU7-1 is one of the most recently discovered genes for AGS, and the clinical effects of JAK inhibition in these patients have not been reported.
View Article and Find Full Text PDFRNA
January 2025
Medical University of Vienna, Division of Cell & Developmental Biology, Center of Anatomy and Cell Biology
Adenosine to inosine conversion by ADARs was first identified in the late eighties of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA-editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2024
Translational Genetics Research Group, La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell nº 106 Tower A, 7th Floor, Valencia, Spain.
Background: Aicardi-Goutières Syndrome is a monogenic type 1 interferonopathy with infantile onset, characterized by a variable degree of neurological damage. Approximately 7% of Aicardi-Goutières Syndrome cases are caused by pathogenic variants in the ADAR gene and are classified as Aicardi-Goutières Syndrome type 6. Here, we present a new homozygous pathogenic variant in the ADAR gene.
View Article and Find Full Text PDFEMBO J
December 2024
Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
The cytosolic nucleic acid sensors RIG-I and cGAS induce type-I interferon (IFN)-mediated immune responses to RNA and DNA viruses, respectively. So far no connection between the two cytosolic pathways upstream of IKK-like kinase activation has been investigated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNPM) as a positive regulator of IRF3 phosphorylation and type-I IFN induction downstream of both cGAS and RIG-I.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!