Cognitive changes with aging are highly variable across individuals. This study investigated whether cognitive control performance might depend on preservation of structural and effective connectivity in older individuals. Specifically, we tested inhibition following working memory (WM) updating and maintenance. We analyzed diffusion tensor imaging and functional magnetic resonance imaging data in thirty-four young adults and thirty-four older adults, who performed an arithmetic verification task during functional magnetic resonance imaging. Results revealed larger arithmetic interference in older adults relative to young adults after WM updating, whereas both groups showed similar interference after WM maintenance. In both groups, arithmetic interference was associated with larger activations and stronger effective connectivity among bilateral anterior cingulate, bilateral inferior frontal gyrus, and left angular gyrus, with larger activations of frontal regions in older adults than in younger adults. In older adults, preservation of frontoparietal structural microstructure, especially involving the inferior frontaloccipital fasciculus, was associated with reduced interference, and stronger task-related effective connectivity. These results highlight how both structural and functional changes in the cognitive control network contribute to individual variability in performance during aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2019.06.013DOI Listing

Publication Analysis

Top Keywords

effective connectivity
16
older adults
16
cognitive control
12
structural effective
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
young adults
8
arithmetic interference
8
larger activations
8

Similar Publications

Background: While epidemiological data suggest a connection between atopic dermatitis (AD) and COVID-19, the molecular mechanisms underlying this relationship remain unclear.

Objective: To investigate whether COVID-19-related CpGs may contribute to AD development and whether this association is mediated through the regulation of specific genes' expression.

Methods: We combined Mendelian randomization and transcriptome analysis for data-driven explorations.

View Article and Find Full Text PDF

Drought-induced changes in floral traits can disrupt plant-pollinator interactions, influencing pollination and reproductive success. These phenotypic changes likely also affect natural selection on floral traits, yet phenotypic selection studies manipulating drought remain rare. We studied how drought impacts selection to understand the potential evolutionary consequences of drought on floral traits.

View Article and Find Full Text PDF

Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.

View Article and Find Full Text PDF

Neural Correlates of Irritability and Potential Moderating Effects of Inhibitory Control.

Biol Psychiatry Glob Open Sci

March 2025

Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York.

Background: Irritability affects up to 20% of youth and is a primary reason for referral to pediatric mental health clinics. Irritability is thought to be associated with disruptions in processing of reward, threat, and cognitive control; however, empirical study of these associations at both the behavioral and neural level have yielded equivocal findings that may be driven by small sample sizes and differences in study design. Associations between irritability and brain connectivity between cognitive control and reward- or threat-processing circuits remain understudied.

View Article and Find Full Text PDF

Introduction: Musculocontractural Ehlers-Danlos syndrome (mcEDS) is a rare autosomal recessive connective tissue disorder caused by systemic depletion of dermatan sulfate. Symptoms characteristic of mcEDS include multiple contractures, fragile skin with subcutaneous bleeding, and hypermobile joints, which suggest difficulty in perioperative management. However, safe surgical techniques and perioperative management of this disorder remain unknown because of its rarity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!