Vegetation plays a key role in influencing the morphodynamics of river deltas, yet channelization of most of the world's rivers limits delta movement and resulting vegetation patterns. Thus, our understanding of vegetation dynamics in newly formed and abandoned deltaic wetlands is still poor. The artificial channel diversion of the mouth of the Yellow River in 1996 created conditions that mimic a natural delta lobe shift by increasing freshwater, sediment, and nutrient supply to wetlands along the new Yellow River course (NYR) and allowing seawater encroachment in the abandoned Yellow River course (OYR). To examine the effects of this river channel shift on the vegetation and seed bank structure, above-ground vegetation and seed bank species richness and diversity were examined from the channel to the marsh interior in wetlands of both OYR and NYR. A total of 17 plant species were found growing across both sites, 9 species were in OYR and 16 species in NYR. Soil depth did not influence seed bank density in OYR, but the seed bank density in the 0-5 cm soil layer was significantly greater than in the 5-10 cm soil layer in NYR. Species diversity of the vegetation and soil seed bank was strongly influenced by soil salinity and hydrology, which varied along the gradient from seaside to river bank. There was a greater separation in species composition between seed bank and vegetation in the OYR than in the NYR. The findings suggest that channel diversion of the Yellow River Had a significant effect to the above-ground vegetation. However, the species richness and diversity of soil seed banks in the OYR was similar to that of the NYR, indicating that seed banks had a greater tolerance to external disturbance compared with vegetation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.133600 | DOI Listing |
Am J Reprod Immunol
January 2025
Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA.
Problem: COVID-19 during pregnancy is linked to increased maternal morbidity and a higher incidence of preterm births (PTBs), yet the underlying mechanisms remain unclear. Cellular senescence, characterized by the irreversible cessation of cell division, is a critical process in placental function, and its dysregulation has been implicated in pregnancy complications like PTB. Senescence can be induced by various stressors, including oxidative stress, DNA damage, and viral infections.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
At-risk conifer stands growing in hot, arid conditions at low elevations may contain the most climate change-adapted seeds needed for sustainable forestry. This study used a triage framework to identify high-priority survey areas for Pinus ponderosa (Pipo) within a large region, by intersecting an updated range map with a map of seed zones and elevation bands (SZEBs). The framework assesses place-based climate change and potential wildfire risks by rank-order across 740 potential collection units.
View Article and Find Full Text PDFPeerJ
December 2024
Institute of Science and Engineering of Ecology in Arid and Semi-arid Areas, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China.
Urbanization greatly impacts both the diversity of soil seed banks and the spatial dynamics of species. These seed banks serve as a window into the ecological history and potential for recovery in urban wastelands, which are continually evolving due to urbanization. In this study, we selected 24 plots along urban-rural gradients in Shanghai, China.
View Article and Find Full Text PDFPlant Biol (Stuttg)
December 2024
Laboratory of Entomology, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands.
Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities.
View Article and Find Full Text PDFShrub encroachment can alter the structure and function of grassland ecosystems, leading to their degradation. Therefore, population regeneration dynamics after shrub encroachment on the influence of grassland should not be ignored. , as a pioneer species, has significantly encroached with large areas on the Qinghai-Tibetan Plateau (QTP) due to climate change and over-grazing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!