Neurochemical investigation of multiple locally induced seizures using microdialysis sampling: Epilepsy effects on glutamate release.

Brain Res

Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States.

Published: November 2019

The objective of this study was to develop an in vivo model for locally induced epilepsy. Epilepsy is a prominent neurological disorder that affects millions of people worldwide. Patients may experience either global seizures, affecting the entire brain, or focal seizures, affecting only one brain region. The majority of epileptic patients experience focal seizures but they go undiagnosed because such seizures can be difficult to detect. To better understand the effects of focal epilepsy on the neurochemistry of a brain region with high seizure diathesis, an animal model for locally induced seizures in the hippocampus was developed. In this model, two seizure events were chemically induced by administering the epileptogenic agent, 3-mercaptopropionic acid (3-MPA), to the hippocampus to disturb the balance between excitatory and inhibitory neurotransmitters in the brain. Microdialysis was used for local delivery of 3-MPA as well as for collection of dialysate for neurochemical analyses. Two periods of seizures separated by varying inter-seizure recovery times were employed, and changes in the release of the excitatory transmitter, glutamate, were measured. Significant differences in glutamate release were observed between the first and second seizure episodes. Diminished glutamate biosynthesis, enhanced glutamate re-uptake, and/or neuronal death were considered possible causes of the attenuated glutamate release during the second seizure episode. Biochemical measurements were indicative that a combination of these factors led to the attenuation in glutamate release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2019.146360DOI Listing

Publication Analysis

Top Keywords

glutamate release
16
locally induced
12
induced seizures
8
model locally
8
patients experience
8
focal seizures
8
brain region
8
second seizure
8
seizures
7
glutamate
7

Similar Publications

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity.

Cell Res

January 2025

Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.

Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.

View Article and Find Full Text PDF

Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.

View Article and Find Full Text PDF

Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!