Dexamethasone (DEX) induces significant cytotoxicity to human osteoblasts. cPWWP2A is recently-indentified novel circular RNA (circRNA), acting as an endogenous sponge of microRNA-579 (miR-579). The present study tested the expression and potential functions of the cPWWP2A-miR-579 axis in DEX-treated osteoblasts. We show that cPWWP2A is downregulated in the necrotic femoral head tissues of DEX-taking human patients as well as in DEX-treated human osteoblasts. In OB-6 osteoblastic cells and primary human osteoblasts ectopic overexpression of cPWWP2A potently inhibited DEX-induced miR-579 accumulation, cell death, apoptosis and programmed necrosis. Silencing miR-579, by targeted siRNAs, also attenuated DEX-induced cytotoxicity in human osteoblasts. Significantly, mimicking DEX-induced actions, cPWWP2A silencing or forced miR-579 overexpression induced significant cytotoxicity in human osteoblasts. Further analyses demonstrated that miR-579's targets, including SIRT1 and PDK1 (phosphoinositide-dependent protein kinase 1), were downregulated in DEX-treated osteoblasts. Their levels were decreased as well in the necrotic femoral head tissues of DEX-taking human patients. Taken together we show that dysregulation of the cPWWP2A-miR-579 axis is involved in DEX-induced cytotoxicity in human osteoblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.07.095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!