A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalytic recycling of NAD(P)H. | LitMetric

Catalytic recycling of NAD(P)H.

J Inorg Biochem

Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

Published: October 2019

A large number of industrially relevant enzymes depend upon dihydronicotinamide adenine dinucleotide (NADH) and dihydronicotinamide adenine dinucleotide phosphate (NADPH) cofactors, which are too expensive to be added in stoichiometric amounts. Existing NAD(P)H-recycling systems suffer from low activity, or the generation of side products. This review focuses on NAD(P)H cofactor regeneration catalyzed by transition metal complexes such as rhodium, ruthenium and iridium complexes using cheap reducing agents such as hydrogen (H) and ethanol, which have attracted increasing attention as sustainable energy carriers. The catalytic mechanisms for the regioselective reduction of NAD(P) are discussed with emphasis on identification of catalytically active intermediates such as transition metal hydride complexes. Applications of NAD(P)H-recycling systems to develop artificial photosynthesis are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2019.110777DOI Listing

Publication Analysis

Top Keywords

dihydronicotinamide adenine
8
adenine dinucleotide
8
nadph-recycling systems
8
transition metal
8
catalytic recycling
4
recycling nadph
4
nadph large
4
large number
4
number industrially
4
industrially relevant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!