Combustion of coal for energy generation has been a significant contributor to increased concentrations of atmospheric carbon dioxide. It is of interest to evaluate the potential of former coalfields for mitigating these increases by carbon sequestration and to compare different options to achieving this end. Here, carbon sequestration in residual coal seams and through reclamation of spoil tips is compared, and their carbon dioxide storage potential in the South Wales Coalfield estimated. Coal seam sequestration estimates come from an established methodology and consider the total unmined coal resource below 500 m deep with potential for carbon sequestration. The most likely effective deep seam storage capacity is 104.9 Mt carbon dioxide, taking account of reservoir conditions and engineering factors. Whilst many spoil tips in South Wales have been reclaimed, the focus has not been on carbon sequestration potential. Estimates of minesoil restoration sequestration capacity were based on a survey of restored minesoil and vegetation carbon stocks, mainly on sites 20-30 years after restoration; data from this survey were then extrapolated to the coalfield as a whole. Minesoil storage is estimated at 1.5 or 2.5 Mt (+2.2 Mt in tree biomass) carbon dioxide based on average grassland or woodland measurements, respectively; modelled data predicted equilibrium values of 2.9 and 2.6 Mt carbon dioxide respectively in grassland or woodland minesoils. If all sites achieved close to the maximum capacity in their land use class, minesoil storage capacity would increase to 2.1 or 3.9 Mt carbon dioxide, respectively. Combining the best woodland minesoil and standing biomass values, sequestration capacity increases to 7.2 Mt carbon dioxide. The wider social, economic, environmental and regulatory constraints to achieving this sequestration for each approach are discussed. Coal seam sequestration has a much higher capacity but sequestration in mine sites is less costly and has fewer regulatory constraints. Findings indicate a significant combined potential for carbon sequestration in the South Wales Coalfield and highlight challenges in achieving this potential. On a global scale, ex-coalfield sequestration could contribute to broader efforts to mitigate emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.109325 | DOI Listing |
Introduction Chronic obstructive pulmonary disease (COPD) is a significant contributor to global morbidity and mortality. Despite well-established management protocols, treatment remains suboptimal due to high costs and mortality rates. This study aims to compare the impact of initial oxygenation status, Dyspnea, Eosinopenia, Consolidation, Acidemia, and Atrial Fibrillation (DECAF), and National Early Warning Score 2 (NEWS2) scores on management outcomes in COPD patients.
View Article and Find Full Text PDFChem Sci
December 2024
LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
The escalating emissions of anthropogenic carbon dioxide (CO) and the pervasive issue of nondegradable plastic pollution underscore dual urgent challenges in pursuit of a sustainable society. Achieving such sustainability in the plastic industry, while effectively addressing these environmental concerns, necessitates the development and implementation of innovative strategies for the synthesis of biodegradable polymers utilizing CO as feedstocks. The technologies not only facilitate the mitigation of elevated atmospheric CO concentrations but also introduce a renewable carbon resource for polymer manufacturing.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
The electrochemical reduction of carbon dioxide (CORR) offers potential for sustainable production and greenhouse gas mitigation, particularly with renewable energy integration. However, its widespread application is hindered by expensive catalysts, low selectivity, and limited current density. This study addresses these challenges by developing a low-mass-loading two-dimensional (2D) BiOSe catalyst chemical vapor deposition (CVD).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Automated tools for quantification of idiopathic pulmonary fibrosis (IPF) can aid in ensuring reproducibility, however their complexity and costs can differ substantially. In this retrospective study, two automated tools were compared in 45 patients with biopsy proven (12/45) and imaging-based (33/45) IPF diagnosis (mean age 74 ± 9 years, 37 male) for quantification of pulmonary fibrosis in CT. First, a tool that identifies multiple characteristic lung texture features was applied to measure multi-texture fibrotic lung (MTFL) by combining the amount of ground glass, reticulation, and honeycombing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!