Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dermatophytes are among the most successful fungal pathogens in humans, but their virulence mechanisms have not yet been fully characterized. Dermatophytic fungi secrete proteases in vivo, which are responsible for fungal colonization and degradation of the keratinized tissue during infection. In the present study, we used PCR to investigate the presence of genes encoding fungalysins (MEP) and subtilisins (SUB) in three dermatophyte species whose incidence is increasing in Europe: the anthropophilic Trichophyton rubrum (n = 58), zoophilic Microsporum canis (n = 33), and Trichophyton benhamiae (n = 6). MEP2 and SUB4 genes were significantly correlated with T. rubrum; MEP3 and SUB1 were mostly frequently harbored by M. canis; and MEP1, 2, and 4 and SUB3-7 were most frequently harbored by T. benhamiae isolates (p < 0.05). Furthermore, MEP1-5 and SUB1-3 genes were significantly more prevalent among human clinical isolates of M. canis (n = 17) than among asymptomatic cat isolates of M. canis (n = 16; p < 0.05). Unidentified MEP and/or SUB genes in some isolates in the current study may suggest that other gene repertoires may be involved in the degradation of keratin. The presented analysis of the incidence of MEP and SUB virulence genes in three dermatophyte species of diverse origins provides an insight into the host-fungus interaction and dermatophyte pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11046-019-00367-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!